Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Calcola il limite.
Passaggio 1.1.2.1.1
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.2.1.2
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 1.1.2.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.3
Semplifica la risposta.
Passaggio 1.1.2.3.1
Il valore esatto di è .
Passaggio 1.1.2.3.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.3.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.3
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.3
La derivata di rispetto a è .
Passaggio 1.3.4
Semplifica.
Passaggio 1.3.4.1
Riordina i fattori di .
Passaggio 1.3.4.2
Riordina e .
Passaggio 1.3.4.3
Riordina e .
Passaggio 1.3.4.4
Applica l'identità a doppio angolo del seno.
Passaggio 1.3.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 3
Passaggio 3.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 3.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 3.1.2
Calcola il limite del numeratore.
Passaggio 3.1.2.1
Calcola il limite.
Passaggio 3.1.2.1.1
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 3.1.2.1.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 3.1.2.2
Calcola il limite di inserendo per .
Passaggio 3.1.2.3
Semplifica la risposta.
Passaggio 3.1.2.3.1
Moltiplica per .
Passaggio 3.1.2.3.2
Il valore esatto di è .
Passaggio 3.1.3
Calcola il limite di inserendo per .
Passaggio 3.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 3.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3.3
Trova la derivata del numeratore e del denominatore.
Passaggio 3.3.1
Differenzia numeratore e denominatore.
Passaggio 3.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 3.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.2.2
La derivata di rispetto a è .
Passaggio 3.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.3.5
Moltiplica per .
Passaggio 3.3.6
Sposta alla sinistra di .
Passaggio 3.3.7
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4
Dividi per .
Passaggio 4
Passaggio 4.1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 4.2
Sposta il limite all'interno della funzione trigonometrica, poiché il coseno è continuo.
Passaggio 4.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 5
Calcola il limite di inserendo per .
Passaggio 6
Passaggio 6.1
Elimina il fattore comune di .
Passaggio 6.1.1
Elimina il fattore comune.
Passaggio 6.1.2
Riscrivi l'espressione.
Passaggio 6.2
Moltiplica per .
Passaggio 6.3
Moltiplica per .
Passaggio 6.4
Il valore esatto di è .