Calcolo Esempi

Trovare la Retta Tangente nel Punto y=18/(x^2+2) , (1,6)
,
Passaggio 1
Trova la derivata prima e risolvi e per trovare il coefficiente angolare della linea tangente.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia usando la regola multipla costante.
Tocca per altri passaggi...
Passaggio 1.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2
Riscrivi come .
Passaggio 1.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 1.3.1
Moltiplica per .
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.5
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.3.5.1
Somma e .
Passaggio 1.3.5.2
Moltiplica per .
Passaggio 1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 1.4.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 1.4.2.1
e .
Passaggio 1.4.2.2
Sposta il negativo davanti alla frazione.
Passaggio 1.4.2.3
e .
Passaggio 1.4.2.4
Sposta alla sinistra di .
Passaggio 1.5
Calcola la derivata per .
Passaggio 1.6
Semplifica.
Tocca per altri passaggi...
Passaggio 1.6.1
Moltiplica per .
Passaggio 1.6.2
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 1.6.2.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.6.2.2
Somma e .
Passaggio 1.6.2.3
Eleva alla potenza di .
Passaggio 1.6.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.6.3.1
Dividi per .
Passaggio 1.6.3.2
Moltiplica per .
Passaggio 2
Inserisci i valori del coefficiente angolare e del punto nella formula di punto-pendenza e risolvi per .
Tocca per altri passaggi...
Passaggio 2.1
Usa il coefficiente angolare e un punto dato da inserire al posto di e nell'equazione della retta passante per due punti , che è derivata dall'equazione della pendenza .
Passaggio 2.2
Semplifica l'equazione e mantienila in forma di punto-pendenza.
Passaggio 2.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.3.1
Semplifica .
Tocca per altri passaggi...
Passaggio 2.3.1.1
Riscrivi.
Passaggio 2.3.1.2
Semplifica aggiungendo gli zeri.
Passaggio 2.3.1.3
Applica la proprietà distributiva.
Passaggio 2.3.1.4
Moltiplica per .
Passaggio 2.3.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 2.3.2.2
Somma e .
Passaggio 3