Calcolo Esempi

Trovare l'Area Tra le Curve y=x^2 , y=2x-x^2
,
Passaggio 1
Risolvi tramite sostituzione per trovare l'intersezione tra le curve.
Tocca per altri passaggi...
Passaggio 1.1
Elimina i lati uguali di ciascuna equazione e combinale.
Passaggio 1.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.2.1
Poiché si trova sul lato destro dell'equazione, inverti i lati così che si trovi sul lato sinistro.
Passaggio 1.2.2
Sposta tutti i termini contenenti sul lato sinistro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.2.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2.2.2
Sottrai da .
Passaggio 1.2.3
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.2.3.1
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 1.2.3.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.2.3.2.1
Scomponi da .
Passaggio 1.2.3.2.2
Scomponi da .
Passaggio 1.2.3.2.3
Scomponi da .
Passaggio 1.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2.4
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 1.2.5
Imposta uguale a .
Passaggio 1.2.6
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 1.2.6.1
Imposta uguale a .
Passaggio 1.2.6.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.2.6.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2.6.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.2.6.2.2.1
Dividi per ciascun termine in .
Passaggio 1.2.6.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.2.6.2.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 1.2.6.2.2.2.2
Dividi per .
Passaggio 1.2.6.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.2.6.2.2.3.1
Dividi per .
Passaggio 1.2.7
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 1.3
Risolvi quando .
Tocca per altri passaggi...
Passaggio 1.3.1
Sostituisci per .
Passaggio 1.3.2
Sostituisci per in e risolvi per .
Tocca per altri passaggi...
Passaggio 1.3.2.1
Rimuovi le parentesi.
Passaggio 1.3.2.2
Semplifica .
Tocca per altri passaggi...
Passaggio 1.3.2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.3.2.2.1.1
Moltiplica per .
Passaggio 1.3.2.2.1.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.3.2.2.1.3
Moltiplica per .
Passaggio 1.3.2.2.2
Somma e .
Passaggio 1.4
Risolvi quando .
Tocca per altri passaggi...
Passaggio 1.4.1
Sostituisci per .
Passaggio 1.4.2
Sostituisci per in e risolvi per .
Tocca per altri passaggi...
Passaggio 1.4.2.1
Rimuovi le parentesi.
Passaggio 1.4.2.2
Semplifica .
Tocca per altri passaggi...
Passaggio 1.4.2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.2.2.1.1
Moltiplica per .
Passaggio 1.4.2.2.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.4.2.2.1.3
Moltiplica per .
Passaggio 1.4.2.2.2
Sottrai da .
Passaggio 1.5
La soluzione del sistema è l'insieme completo di coppie ordinate che sono soluzioni valide.
Passaggio 2
Riordina e .
Passaggio 3
L'area della regione tra le curve è definita come l'integrale della curva superiore meno l'integrale della curva inferiore rispetto a ciascuna regione. Le regioni sono determinate dai punti di intersezione delle curve. Questa operazione si può svolgere algebricamente o graficamente.
Passaggio 4
Integra per trovare l'area tra e .
Tocca per altri passaggi...
Passaggio 4.1
Combina gli interi in un singolo intero.
Passaggio 4.2
Sottrai da .
Passaggio 4.3
Dividi il singolo integrale in più integrali.
Passaggio 4.4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4.5
Secondo la regola di potenza, l'intero di rispetto a è .
Passaggio 4.6
e .
Passaggio 4.7
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4.8
Secondo la regola di potenza, l'intero di rispetto a è .
Passaggio 4.9
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 4.9.1
e .
Passaggio 4.9.2
Sostituisci e semplifica.
Tocca per altri passaggi...
Passaggio 4.9.2.1
Calcola per e per .
Passaggio 4.9.2.2
Calcola per e per .
Passaggio 4.9.2.3
Semplifica.
Tocca per altri passaggi...
Passaggio 4.9.2.3.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.9.2.3.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.9.2.3.3
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.9.2.3.3.1
Scomponi da .
Passaggio 4.9.2.3.3.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 4.9.2.3.3.2.1
Scomponi da .
Passaggio 4.9.2.3.3.2.2
Elimina il fattore comune.
Passaggio 4.9.2.3.3.2.3
Riscrivi l'espressione.
Passaggio 4.9.2.3.3.2.4
Dividi per .
Passaggio 4.9.2.3.4
Moltiplica per .
Passaggio 4.9.2.3.5
Somma e .
Passaggio 4.9.2.3.6
e .
Passaggio 4.9.2.3.7
Sposta il negativo davanti alla frazione.
Passaggio 4.9.2.3.8
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.9.2.3.9
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.9.2.3.10
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.9.2.3.10.1
Scomponi da .
Passaggio 4.9.2.3.10.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 4.9.2.3.10.2.1
Scomponi da .
Passaggio 4.9.2.3.10.2.2
Elimina il fattore comune.
Passaggio 4.9.2.3.10.2.3
Riscrivi l'espressione.
Passaggio 4.9.2.3.10.2.4
Dividi per .
Passaggio 4.9.2.3.11
Moltiplica per .
Passaggio 4.9.2.3.12
Somma e .
Passaggio 4.9.2.3.13
e .
Passaggio 4.9.2.3.14
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.9.2.3.14.1
Elimina il fattore comune.
Passaggio 4.9.2.3.14.2
Riscrivi l'espressione.
Passaggio 4.9.2.3.15
Scrivi come una frazione con un comune denominatore.
Passaggio 4.9.2.3.16
Riduci i numeratori su un comune denominatore.
Passaggio 4.9.2.3.17
Somma e .
Passaggio 5