Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Calcola il limite.
Passaggio 1.1.2.1.1
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 1.1.2.1.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.3
Semplifica la risposta.
Passaggio 1.1.2.3.1
Moltiplica per .
Passaggio 1.1.2.3.2
Il valore esatto di è .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.1.3.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.3
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.2.2
La derivata di rispetto a è .
Passaggio 1.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.5
Moltiplica per .
Passaggio 1.3.6
Sposta alla sinistra di .
Passaggio 1.3.7
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2
Poiché la funzione tende a da sinistra e a da destra, il limite non esiste.