Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=x^3-16x^2+64x
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3
Moltiplica per .
Passaggio 1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.3
Moltiplica per .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 2.4
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.4.2
Somma e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 4.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.2.3
Moltiplica per .
Passaggio 4.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.1.3.3
Moltiplica per .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi mediante raccoglimento.
Tocca per altri passaggi...
Passaggio 5.2.1
Per un polinomio della forma , riscrivi il termine centrale come somma di due termini il cui prodotto è e la cui somma è .
Tocca per altri passaggi...
Passaggio 5.2.1.1
Scomponi da .
Passaggio 5.2.1.2
Riscrivi come più .
Passaggio 5.2.1.3
Applica la proprietà distributiva.
Passaggio 5.2.2
Metti in evidenza il massimo comune divisore da ciascun gruppo.
Tocca per altri passaggi...
Passaggio 5.2.2.1
Raggruppa i primi due termini e gli ultimi due termini.
Passaggio 5.2.2.2
Metti in evidenza il massimo comune divisore (M.C.D.) da ciascun gruppo.
Passaggio 5.2.3
Scomponi il polinomio mettendo in evidenza il massimo comune divisore, .
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.4.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 5.4.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.4.2.2.1
Dividi per ciascun termine in .
Passaggio 5.4.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.4.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.4.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.4.2.2.2.1.2
Dividi per .
Passaggio 5.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Somma a entrambi i lati dell'equazione.
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 9.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 9.1.1.1
Scomponi da .
Passaggio 9.1.1.2
Elimina il fattore comune.
Passaggio 9.1.1.3
Riscrivi l'espressione.
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.2
Sottrai da .
Passaggio 10
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 11
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 11.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 11.2.1.1
Applica la regola del prodotto a .
Passaggio 11.2.1.2
Eleva alla potenza di .
Passaggio 11.2.1.3
Eleva alla potenza di .
Passaggio 11.2.1.4
Applica la regola del prodotto a .
Passaggio 11.2.1.5
Eleva alla potenza di .
Passaggio 11.2.1.6
Eleva alla potenza di .
Passaggio 11.2.1.7
Moltiplica .
Tocca per altri passaggi...
Passaggio 11.2.1.7.1
e .
Passaggio 11.2.1.7.2
Moltiplica per .
Passaggio 11.2.1.8
Sposta il negativo davanti alla frazione.
Passaggio 11.2.1.9
Moltiplica .
Tocca per altri passaggi...
Passaggio 11.2.1.9.1
e .
Passaggio 11.2.1.9.2
Moltiplica per .
Passaggio 11.2.2
Trova il comune denominatore.
Tocca per altri passaggi...
Passaggio 11.2.2.1
Moltiplica per .
Passaggio 11.2.2.2
Moltiplica per .
Passaggio 11.2.2.3
Moltiplica per .
Passaggio 11.2.2.4
Moltiplica per .
Passaggio 11.2.2.5
Riordina i fattori di .
Passaggio 11.2.2.6
Moltiplica per .
Passaggio 11.2.2.7
Moltiplica per .
Passaggio 11.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 11.2.4
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 11.2.4.1
Moltiplica per .
Passaggio 11.2.4.2
Moltiplica per .
Passaggio 11.2.5
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 11.2.5.1
Sottrai da .
Passaggio 11.2.5.2
Somma e .
Passaggio 11.2.6
La risposta finale è .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 13.1
Moltiplica per .
Passaggio 13.2
Sottrai da .
Passaggio 14
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 15
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 15.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 15.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 15.2.1.1
Eleva alla potenza di .
Passaggio 15.2.1.2
Eleva alla potenza di .
Passaggio 15.2.1.3
Moltiplica per .
Passaggio 15.2.1.4
Moltiplica per .
Passaggio 15.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 15.2.2.1
Sottrai da .
Passaggio 15.2.2.2
Somma e .
Passaggio 15.2.3
La risposta finale è .
Passaggio 16
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
Passaggio 17