Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Passaggio 1.2.1
Calcola il limite.
Passaggio 1.2.1.1
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 1.2.1.2
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.2.2
Calcola il limite di inserendo per .
Passaggio 1.2.3
Semplifica la risposta.
Passaggio 1.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.2.3.2
Il valore esatto di è .
Passaggio 1.3
Calcola il limite di inserendo per .
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 3.2.2
La derivata di rispetto a è .
Passaggio 3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.4
Riordina i fattori di .
Passaggio 3.5
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4
Dividi per .
Passaggio 5
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 6
Dividi il numero usando la regola del prodotto di limiti quando tende a .
Passaggio 7
Sposta il limite all'interno della funzione trigonometrica, poiché il coseno è continuo.
Passaggio 8
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 9
Passaggio 9.1
Calcola il limite di inserendo per .
Passaggio 9.2
Calcola il limite di inserendo per .
Passaggio 10
Passaggio 10.1
Moltiplica per .
Passaggio 10.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 10.3
Il valore esatto di è .
Passaggio 10.4
Moltiplica per .