Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 1.3
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 1.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.4
Differenzia.
Passaggio 1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.4.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.4.3
Semplifica l'espressione.
Passaggio 1.4.3.1
Moltiplica per .
Passaggio 1.4.3.2
Sposta alla sinistra di .
Passaggio 1.4.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.4.5
Moltiplica per .
Passaggio 1.5
Semplifica.
Passaggio 1.5.1
Applica la proprietà distributiva.
Passaggio 1.5.2
Moltiplica per .
Passaggio 1.5.3
Riordina i termini.
Passaggio 1.5.4
Riordina i fattori in .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 2.2.3
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 2.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.3.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 2.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.5
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.7
Moltiplica per .
Passaggio 2.2.8
Sposta alla sinistra di .
Passaggio 2.2.9
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 2.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.3.2.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 2.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
Sposta alla sinistra di .
Passaggio 2.3.7
Moltiplica per .
Passaggio 2.4
Semplifica.
Passaggio 2.4.1
Applica la proprietà distributiva.
Passaggio 2.4.2
Raccogli i termini.
Passaggio 2.4.2.1
Moltiplica per .
Passaggio 2.4.2.2
Somma e .
Passaggio 2.4.3
Riordina i termini.
Passaggio 2.4.4
Riordina i fattori in .
Passaggio 3
Passaggio 3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.2
Calcola .
Passaggio 3.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2.2
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 3.2.3
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 3.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 3.2.3.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 3.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2.5
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.2.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.2.7
Moltiplica per .
Passaggio 3.2.8
Sposta alla sinistra di .
Passaggio 3.2.9
Moltiplica per .
Passaggio 3.3
Calcola .
Passaggio 3.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 3.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.2.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 3.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.3.5
Moltiplica per .
Passaggio 3.3.6
Sposta alla sinistra di .
Passaggio 3.3.7
Moltiplica per .
Passaggio 3.4
Semplifica.
Passaggio 3.4.1
Applica la proprietà distributiva.
Passaggio 3.4.2
Raccogli i termini.
Passaggio 3.4.2.1
Moltiplica per .
Passaggio 3.4.2.2
Somma e .
Passaggio 3.4.3
Riordina i termini.
Passaggio 3.4.4
Riordina i fattori in .
Passaggio 4
Passaggio 4.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.2
Calcola .
Passaggio 4.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.2.2
Differenzia usando la regola del prodotto, che indica che è dove e .
Passaggio 4.2.3
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 4.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 4.2.3.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 4.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.2.5
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.2.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.2.7
Moltiplica per .
Passaggio 4.2.8
Sposta alla sinistra di .
Passaggio 4.2.9
Moltiplica per .
Passaggio 4.3
Calcola .
Passaggio 4.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 4.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.3.2.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 4.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.3.5
Moltiplica per .
Passaggio 4.3.6
Sposta alla sinistra di .
Passaggio 4.3.7
Moltiplica per .
Passaggio 4.4
Semplifica.
Passaggio 4.4.1
Applica la proprietà distributiva.
Passaggio 4.4.2
Raccogli i termini.
Passaggio 4.4.2.1
Moltiplica per .
Passaggio 4.4.2.2
Somma e .
Passaggio 4.4.3
Riordina i termini.
Passaggio 4.4.4
Riordina i fattori in .
Passaggio 5
La derivata quarta di rispetto a è .