Calcolo Esempi

求2nd的导数 y=e^(-x)+e^x
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 1.2.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.1.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 1.2.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.4
Moltiplica per .
Passaggio 1.2.5
Sposta alla sinistra di .
Passaggio 1.2.6
Riscrivi come .
Passaggio 1.3
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 1.4
Riordina i termini.
Passaggio 2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 2.3
Calcola .
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 2.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.3.2.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 2.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
Sposta alla sinistra di .
Passaggio 2.3.7
Riscrivi come .
Passaggio 2.3.8
Moltiplica per .
Passaggio 2.3.9
Moltiplica per .
Passaggio 3
Trova la derivata terza.
Tocca per altri passaggi...
Passaggio 3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 3.3
Calcola .
Tocca per altri passaggi...
Passaggio 3.3.1
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 3.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.1.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 3.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 3.3.4
Moltiplica per .
Passaggio 3.3.5
Sposta alla sinistra di .
Passaggio 3.3.6
Riscrivi come .
Passaggio 4
Trova la derivata quarta.
Tocca per altri passaggi...
Passaggio 4.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 4.3
Calcola .
Tocca per altri passaggi...
Passaggio 4.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 4.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.3.2.2
Differenzia usando la regola esponenziale, che indica che è dove =.
Passaggio 4.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 4.3.5
Moltiplica per .
Passaggio 4.3.6
Sposta alla sinistra di .
Passaggio 4.3.7
Riscrivi come .
Passaggio 4.3.8
Moltiplica per .
Passaggio 4.3.9
Moltiplica per .