Calcolo Esempi

Valutare l'Integrale integrale di 1/(x-x^2) rispetto a x
Passaggio 1
Scrivi la frazione usando la scomposizione della frazione parziale.
Tocca per altri passaggi...
Passaggio 1.1
Scomponi la frazione e moltiplica per il comune denominatore.
Tocca per altri passaggi...
Passaggio 1.1.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.1.1.1
Eleva alla potenza di .
Passaggio 1.1.1.2
Scomponi da .
Passaggio 1.1.1.3
Scomponi da .
Passaggio 1.1.1.4
Scomponi da .
Passaggio 1.1.1.5
Moltiplica per .
Passaggio 1.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 1.1.3
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 1.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.4.1
Elimina il fattore comune.
Passaggio 1.1.4.2
Riscrivi l'espressione.
Passaggio 1.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.5.1
Elimina il fattore comune.
Passaggio 1.1.5.2
Riscrivi l'espressione.
Passaggio 1.1.6
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.6.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.6.1.1
Elimina il fattore comune.
Passaggio 1.1.6.1.2
Dividi per .
Passaggio 1.1.6.2
Applica la proprietà distributiva.
Passaggio 1.1.6.3
Moltiplica per .
Passaggio 1.1.6.4
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 1.1.6.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.6.5.1
Elimina il fattore comune.
Passaggio 1.1.6.5.2
Dividi per .
Passaggio 1.1.7
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.7.1
Sposta .
Passaggio 1.1.7.2
Riordina e .
Passaggio 1.1.7.3
Sposta .
Passaggio 1.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Tocca per altri passaggi...
Passaggio 1.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.3
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 1.3
Risolvi il sistema di equazioni.
Tocca per altri passaggi...
Passaggio 1.3.1
Riscrivi l'equazione come .
Passaggio 1.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 1.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.2.2.1
Moltiplica per .
Passaggio 1.3.3
Risolvi per in .
Tocca per altri passaggi...
Passaggio 1.3.3.1
Riscrivi l'equazione come .
Passaggio 1.3.3.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.3.4
Risolvi il sistema di equazioni.
Passaggio 1.3.5
Elenca tutte le soluzioni.
Passaggio 1.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per e .
Passaggio 1.5
Rimuovi lo zero dall'espressione.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
L'integrale di rispetto a è .
Passaggio 4
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 4.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 4.1.1
Riscrivi.
Passaggio 4.1.2
Dividi per .
Passaggio 4.2
Riscrivi il problema utilizzando e .
Passaggio 5
Sposta il negativo davanti alla frazione.
Passaggio 6
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 7
L'integrale di rispetto a è .
Passaggio 8
Semplifica.
Passaggio 9
Utilizza la proprietà del quoziente dei logaritmi, .
Passaggio 10
Sostituisci tutte le occorrenze di con .