Calcolo Esempi

Trovare i Punti di Flesso (e^x)/(8+e^x)
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 2.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.1.3
Differenzia.
Tocca per altri passaggi...
Passaggio 2.1.3.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.3.3
Somma e .
Passaggio 2.1.4
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.1.5
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.1.5.1
Sposta .
Passaggio 2.1.5.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.1.5.3
Somma e .
Passaggio 2.1.6
Semplifica.
Tocca per altri passaggi...
Passaggio 2.1.6.1
Applica la proprietà distributiva.
Passaggio 2.1.6.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.1.6.2.1
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.1.6.2.1.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.1.6.2.1.2
Somma e .
Passaggio 2.1.6.2.2
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 2.1.6.2.2.1
Sottrai da .
Passaggio 2.1.6.2.2.2
Somma e .
Passaggio 2.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 2.2.3
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.2.3.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.2.3.2
Moltiplica per .
Passaggio 2.2.4
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.2.5
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 2.2.5.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.5.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.6
Differenzia.
Tocca per altri passaggi...
Passaggio 2.2.6.1
Moltiplica per .
Passaggio 2.2.6.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.6.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.6.4
Somma e .
Passaggio 2.2.7
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.2.8
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.2.9
Somma e .
Passaggio 2.2.10
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.2.10.1
Scomponi da .
Passaggio 2.2.10.2
Scomponi da .
Passaggio 2.2.10.3
Scomponi da .
Passaggio 2.2.11
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 2.2.11.1
Scomponi da .
Passaggio 2.2.11.2
Elimina il fattore comune.
Passaggio 2.2.11.3
Riscrivi l'espressione.
Passaggio 2.2.12
e .
Passaggio 2.2.13
Semplifica.
Tocca per altri passaggi...
Passaggio 2.2.13.1
Applica la proprietà distributiva.
Passaggio 2.2.13.2
Applica la proprietà distributiva.
Passaggio 2.2.13.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.2.13.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.2.13.3.1.1
Moltiplica per .
Passaggio 2.2.13.3.1.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.2.13.3.1.2.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.2.13.3.1.2.2
Somma e .
Passaggio 2.2.13.3.1.3
Moltiplica per .
Passaggio 2.2.13.3.2
Sottrai da .
Passaggio 2.2.13.4
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.2.13.4.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.2.13.4.1.1
Scomponi da .
Passaggio 2.2.13.4.1.2
Scomponi da .
Passaggio 2.2.13.4.1.3
Scomponi da .
Passaggio 2.2.13.4.2
Riscrivi come .
Passaggio 2.2.13.4.3
Sia . Sostituisci tutte le occorrenze di con .
Passaggio 2.2.13.4.4
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.2.13.4.4.1
Scomponi da .
Passaggio 2.2.13.4.4.2
Scomponi da .
Passaggio 2.2.13.4.4.3
Scomponi da .
Passaggio 2.2.13.4.5
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
La derivata seconda di rispetto a è .
Passaggio 3
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 3.1
Imposta la derivata seconda uguale a .
Passaggio 3.2
Poni il numeratore uguale a zero.
Passaggio 3.3
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 3.3.1
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 3.3.2
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.2.1
Imposta uguale a .
Passaggio 3.3.2.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.2.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 3.3.2.2.2
Non è possibile risolvere l'equazione perché è indefinita.
Indefinito
Passaggio 3.3.2.2.3
Non c'è soluzione per
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 3.3.3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.3.1
Imposta uguale a .
Passaggio 3.3.3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 3.3.3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.3.3.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 3.3.3.2.2.1
Dividi per ciascun termine in .
Passaggio 3.3.3.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.3.3.2.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 3.3.3.2.2.2.2
Dividi per .
Passaggio 3.3.3.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 3.3.3.2.2.3.1
Dividi per .
Passaggio 3.3.3.2.3
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 3.3.3.2.4
Espandi il lato sinistro.
Tocca per altri passaggi...
Passaggio 3.3.3.2.4.1
Espandi spostando fuori dal logaritmo.
Passaggio 3.3.3.2.4.2
Il logaritmo naturale di è .
Passaggio 3.3.3.2.4.3
Moltiplica per .
Passaggio 3.3.4
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 4
Trova i punti dove la derivata seconda è .
Tocca per altri passaggi...
Passaggio 4.1
Sostituisci in per trovare il valore di .
Tocca per altri passaggi...
Passaggio 4.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.1.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 4.1.2.1
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 4.1.2.2
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 4.1.2.2.1
L'esponenziazione e il logaritmo sono funzioni inverse.
Passaggio 4.1.2.2.2
Somma e .
Passaggio 4.1.2.3
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.1.2.3.1
Scomponi da .
Passaggio 4.1.2.3.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 4.1.2.3.2.1
Scomponi da .
Passaggio 4.1.2.3.2.2
Elimina il fattore comune.
Passaggio 4.1.2.3.2.3
Riscrivi l'espressione.
Passaggio 4.1.2.4
La risposta finale è .
Passaggio 4.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 5
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
La risposta finale è .
Passaggio 7.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 8
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso il punto di flesso è .
Passaggio 9