Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x)=(x+3)/(x-3)
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.2.4.1
Somma e .
Passaggio 1.2.4.2
Moltiplica per .
Passaggio 1.2.5
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.6
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.2.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.8
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.2.8.1
Somma e .
Passaggio 1.2.8.2
Moltiplica per .
Passaggio 1.3
Semplifica.
Tocca per altri passaggi...
Passaggio 1.3.1
Applica la proprietà distributiva.
Passaggio 1.3.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.3.2.1
Combina i termini opposti in .
Tocca per altri passaggi...
Passaggio 1.3.2.1.1
Sottrai da .
Passaggio 1.3.2.1.2
Sottrai da .
Passaggio 1.3.2.2
Moltiplica per .
Passaggio 1.3.2.3
Sottrai da .
Passaggio 1.3.3
Sposta il negativo davanti alla frazione.
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Differenzia usando la regola multipla costante.
Tocca per altri passaggi...
Passaggio 2.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 2.1.2.1
Riscrivi come .
Passaggio 2.1.2.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 2.1.2.2.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 2.1.2.2.2
Moltiplica per .
Passaggio 2.2
Differenzia usando la regola della catena, che indica che è dove e .
Tocca per altri passaggi...
Passaggio 2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Differenzia.
Tocca per altri passaggi...
Passaggio 2.3.1
Moltiplica per .
Passaggio 2.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 2.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.5
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.3.5.1
Somma e .
Passaggio 2.3.5.2
Moltiplica per .
Passaggio 2.4
Semplifica.
Tocca per altri passaggi...
Passaggio 2.4.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 2.4.2
e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Poiché non c'è alcun valore di che rende la derivata prima uguale a , non ci sono estremi locali.
Nessun estremo locale
Passaggio 5
Nessun estremo locale
Passaggio 6