Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Passaggio 1.1.2.1
Calcola il limite.
Passaggio 1.1.2.1.1
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.1.2.1.2
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.1.3
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.1.2.1.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.3
Semplifica la risposta.
Passaggio 1.1.2.3.1
Semplifica ciascun termine.
Passaggio 1.1.2.3.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.1.2.3.1.2
Moltiplica per .
Passaggio 1.1.2.3.2
Sottrai da .
Passaggio 1.1.2.3.3
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.1.3
Calcola il limite del denominatore.
Passaggio 1.1.3.1
Calcola il limite.
Passaggio 1.1.3.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.1.2
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 1.1.3.1.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.3.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.3
Semplifica la risposta.
Passaggio 1.1.3.3.1
Semplifica ciascun termine.
Passaggio 1.1.3.3.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.1.3.3.1.2
Moltiplica per .
Passaggio 1.1.3.3.2
Sottrai da .
Passaggio 1.1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 1.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.4
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.6
Somma e .
Passaggio 1.3.7
Moltiplica per .
Passaggio 1.3.8
Riordina i fattori di .
Passaggio 1.3.9
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.10
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.3.11
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.12
Somma e .
Passaggio 1.4
Riduci.
Passaggio 1.4.1
Elimina il fattore comune di e .
Passaggio 1.4.1.1
Scomponi da .
Passaggio 1.4.1.2
Elimina i fattori comuni.
Passaggio 1.4.1.2.1
Scomponi da .
Passaggio 1.4.1.2.2
Elimina il fattore comune.
Passaggio 1.4.1.2.3
Riscrivi l'espressione.
Passaggio 1.4.2
Elimina il fattore comune di e .
Passaggio 1.4.2.1
Scomponi da .
Passaggio 1.4.2.2
Elimina i fattori comuni.
Passaggio 1.4.2.2.1
Scomponi da .
Passaggio 1.4.2.2.2
Elimina il fattore comune.
Passaggio 1.4.2.2.3
Riscrivi l'espressione.
Passaggio 2
Passaggio 2.1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.2
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.3
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 2.4
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.5
Sposta l'esponente da fuori dal limite usando la regola di potenza dei limiti.
Passaggio 2.6
Calcola il limite di che è costante, mentre tende a .
Passaggio 3
Passaggio 3.1
Calcola il limite di inserendo per .
Passaggio 3.2
Calcola il limite di inserendo per .
Passaggio 4
Passaggio 4.1
Dividi per .
Passaggio 4.2
Semplifica ciascun termine.
Passaggio 4.2.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.2.2
Moltiplica per .
Passaggio 4.3
Sottrai da .
Passaggio 4.4
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.5
Moltiplica per .