Inserisci un problema...
Calcolo Esempi
Passaggio 1
Imposta come una funzione di .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.3
Moltiplica per .
Passaggio 3
Passaggio 3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 3.2
Dividi per ciascun termine in e semplifica.
Passaggio 3.2.1
Dividi per ciascun termine in .
Passaggio 3.2.2
Semplifica il lato sinistro.
Passaggio 3.2.2.1
Elimina il fattore comune di .
Passaggio 3.2.2.1.1
Elimina il fattore comune.
Passaggio 3.2.2.1.2
Dividi per .
Passaggio 3.2.3
Semplifica il lato destro.
Passaggio 3.2.3.1
Elimina il fattore comune di e .
Passaggio 3.2.3.1.1
Scomponi da .
Passaggio 3.2.3.1.2
Elimina i fattori comuni.
Passaggio 3.2.3.1.2.1
Scomponi da .
Passaggio 3.2.3.1.2.2
Elimina il fattore comune.
Passaggio 3.2.3.1.2.3
Riscrivi l'espressione.
Passaggio 3.2.3.2
Sposta il negativo davanti alla frazione.
Passaggio 4
Passaggio 4.1
Sostituisci la variabile con nell'espressione.
Passaggio 4.2
Semplifica il risultato.
Passaggio 4.2.1
Semplifica ciascun termine.
Passaggio 4.2.1.1
Usa la regola della potenza per distribuire l'esponente.
Passaggio 4.2.1.1.1
Applica la regola del prodotto a .
Passaggio 4.2.1.1.2
Applica la regola del prodotto a .
Passaggio 4.2.1.2
Eleva alla potenza di .
Passaggio 4.2.1.3
Moltiplica per .
Passaggio 4.2.1.4
Eleva alla potenza di .
Passaggio 4.2.1.5
Eleva alla potenza di .
Passaggio 4.2.1.6
Elimina il fattore comune di .
Passaggio 4.2.1.6.1
Scomponi da .
Passaggio 4.2.1.6.2
Elimina il fattore comune.
Passaggio 4.2.1.6.3
Riscrivi l'espressione.
Passaggio 4.2.1.7
Moltiplica .
Passaggio 4.2.1.7.1
Moltiplica per .
Passaggio 4.2.1.7.2
e .
Passaggio 4.2.1.7.3
Moltiplica per .
Passaggio 4.2.1.8
Sposta il negativo davanti alla frazione.
Passaggio 4.2.2
Riduci le frazioni.
Passaggio 4.2.2.1
Riduci i numeratori su un comune denominatore.
Passaggio 4.2.2.2
Semplifica l'espressione.
Passaggio 4.2.2.2.1
Sottrai da .
Passaggio 4.2.2.2.2
Sposta il negativo davanti alla frazione.
Passaggio 4.2.3
La risposta finale è .
Passaggio 5
La tangente orizzontale sulla funzione è .
Passaggio 6