Calcolo Esempi

Trovare i Punti Critici y=x/(x^2+1)
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 1.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.2
Moltiplica per .
Passaggio 1.1.2.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.6
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.2.6.1
Somma e .
Passaggio 1.1.2.6.2
Moltiplica per .
Passaggio 1.1.3
Eleva alla potenza di .
Passaggio 1.1.4
Eleva alla potenza di .
Passaggio 1.1.5
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.1.6
Somma e .
Passaggio 1.1.7
Sottrai da .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Poni il numeratore uguale a zero.
Passaggio 2.3
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 2.3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 2.3.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Dividi per ciascun termine in .
Passaggio 2.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.2.2.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 2.3.2.2.2
Dividi per .
Passaggio 2.3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.2.3.1
Dividi per .
Passaggio 2.3.3
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 2.3.4
Qualsiasi radice di è .
Passaggio 2.3.5
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 2.3.5.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 2.3.5.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 2.3.5.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 4.1.1
Sostituisci a .
Passaggio 4.1.2
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 4.1.2.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 4.1.2.2
Somma e .
Passaggio 4.2
Calcola per .
Tocca per altri passaggi...
Passaggio 4.2.1
Sostituisci a .
Passaggio 4.2.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 4.2.2.1.1
Eleva alla potenza di .
Passaggio 4.2.2.1.2
Somma e .
Passaggio 4.2.2.2
Sposta il negativo davanti alla frazione.
Passaggio 4.3
Elenca tutti i punti.
Passaggio 5