Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Sia . Trova .
Passaggio 1.1.1
Differenzia .
Passaggio 1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.4
Moltiplica per .
Passaggio 1.2
Riscrivi il problema utilizzando e .
Passaggio 2
e .
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Utilizza la formula di bisezione per riscrivere come .
Passaggio 5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Moltiplica per .
Passaggio 7
Dividi il singolo integrale in più integrali.
Passaggio 8
Applica la regola costante.
Passaggio 9
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 10
Passaggio 10.1
Sia . Trova .
Passaggio 10.1.1
Differenzia .
Passaggio 10.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 10.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 10.1.4
Moltiplica per .
Passaggio 10.2
Riscrivi il problema utilizzando e .
Passaggio 11
e .
Passaggio 12
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 13
L'integrale di rispetto a è .
Passaggio 14
Semplifica.
Passaggio 15
Passaggio 15.1
Sostituisci tutte le occorrenze di con .
Passaggio 15.2
Sostituisci tutte le occorrenze di con .
Passaggio 15.3
Sostituisci tutte le occorrenze di con .
Passaggio 16
Passaggio 16.1
Semplifica ciascun termine.
Passaggio 16.1.1
Moltiplica per .
Passaggio 16.1.2
e .
Passaggio 16.2
Applica la proprietà distributiva.
Passaggio 16.3
Elimina il fattore comune di .
Passaggio 16.3.1
Scomponi da .
Passaggio 16.3.2
Scomponi da .
Passaggio 16.3.3
Elimina il fattore comune.
Passaggio 16.3.4
Riscrivi l'espressione.
Passaggio 16.4
e .
Passaggio 16.5
Moltiplica .
Passaggio 16.5.1
Moltiplica per .
Passaggio 16.5.2
Moltiplica per .
Passaggio 17
Riordina i termini.