Inserisci un problema...
Calcolo Esempi
Passaggio 1
Sia , dove . Allora . Si noti che, poiché , è positivo.
Passaggio 2
Passaggio 2.1
Semplifica .
Passaggio 2.1.1
Semplifica ciascun termine.
Passaggio 2.1.1.1
Applica la regola del prodotto a .
Passaggio 2.1.1.2
Eleva alla potenza di .
Passaggio 2.1.1.3
Moltiplica per .
Passaggio 2.1.2
Scomponi da .
Passaggio 2.1.3
Scomponi da .
Passaggio 2.1.4
Scomponi da .
Passaggio 2.1.5
Applica l'identità pitagorica.
Passaggio 2.1.6
Riscrivi come .
Passaggio 2.1.7
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 2.2
Semplifica.
Passaggio 2.2.1
Moltiplica per .
Passaggio 2.2.2
Eleva alla potenza di .
Passaggio 2.2.3
Eleva alla potenza di .
Passaggio 2.2.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.2.5
Somma e .
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Usa la formula di bisezione per riscrivere come .
Passaggio 5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6
Passaggio 6.1
e .
Passaggio 6.2
Elimina il fattore comune di e .
Passaggio 6.2.1
Scomponi da .
Passaggio 6.2.2
Elimina i fattori comuni.
Passaggio 6.2.2.1
Scomponi da .
Passaggio 6.2.2.2
Elimina il fattore comune.
Passaggio 6.2.2.3
Riscrivi l'espressione.
Passaggio 6.2.2.4
Dividi per .
Passaggio 7
Dividi il singolo integrale in più integrali.
Passaggio 8
Applica la regola costante.
Passaggio 9
Passaggio 9.1
Sia . Trova .
Passaggio 9.1.1
Differenzia .
Passaggio 9.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 9.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 9.1.4
Moltiplica per .
Passaggio 9.2
Sostituisci il limite inferiore a in .
Passaggio 9.3
Moltiplica per .
Passaggio 9.4
Sostituisci il limite superiore a in .
Passaggio 9.5
Elimina il fattore comune di .
Passaggio 9.5.1
Elimina il fattore comune.
Passaggio 9.5.2
Riscrivi l'espressione.
Passaggio 9.6
I valori trovati per e saranno usati per calcolare l'integrale definito.
Passaggio 9.7
Riscrivi il problema usando , e i nuovi limiti dell'integrazione.
Passaggio 10
e .
Passaggio 11
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 12
L'integrale di rispetto a è .
Passaggio 13
e .
Passaggio 14
Passaggio 14.1
Calcola per e per .
Passaggio 14.2
Calcola per e per .
Passaggio 14.3
Somma e .
Passaggio 15
Passaggio 15.1
Il valore esatto di è .
Passaggio 15.2
Moltiplica per .
Passaggio 15.3
Somma e .
Passaggio 16
Passaggio 16.1
Riduci i numeratori su un comune denominatore.
Passaggio 16.2
Semplifica ciascun termine.
Passaggio 16.2.1
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante.
Passaggio 16.2.2
Il valore esatto di è .
Passaggio 16.3
Somma e .
Passaggio 16.4
Elimina il fattore comune di .
Passaggio 16.4.1
Elimina il fattore comune.
Passaggio 16.4.2
Riscrivi l'espressione.
Passaggio 17
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale:
Passaggio 18