Calcolo Esempi

Trovare i Massimi e i Minimi Locali e^(1-20x+5x^2)
Passaggio 1
Scrivi come funzione.
Passaggio 2
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 2.1.1
Per applicare la regola della catena, imposta come .
Passaggio 2.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2
Differenzia.
Tocca per altri passaggi...
Passaggio 2.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.3
Somma e .
Passaggio 2.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.6
Moltiplica per .
Passaggio 2.2.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.9
Moltiplica per .
Passaggio 3
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 3.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 3.2
Differenzia.
Tocca per altri passaggi...
Passaggio 3.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2.3
Somma e .
Passaggio 3.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.2.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.2.6
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 3.2.6.1
Moltiplica per .
Passaggio 3.2.6.2
Sposta alla sinistra di .
Passaggio 3.3
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 3.3.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 3.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.4
Differenzia.
Tocca per altri passaggi...
Passaggio 3.4.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.4.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4.3
Somma e .
Passaggio 3.4.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4.6
Moltiplica per .
Passaggio 3.4.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4.9
Moltiplica per .
Passaggio 3.5
Eleva alla potenza di .
Passaggio 3.6
Eleva alla potenza di .
Passaggio 3.7
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.8
Somma e .
Passaggio 3.9
Riordina i termini.
Passaggio 4
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 5
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 5.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 5.1.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 5.1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 5.1.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 5.1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 5.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 5.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.2.3
Somma e .
Passaggio 5.1.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.2.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.2.6
Moltiplica per .
Passaggio 5.1.2.7
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.2.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.2.9
Moltiplica per .
Passaggio 5.2
La derivata prima di rispetto a è .
Passaggio 6
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 6.1
Poni la derivata prima uguale a .
Passaggio 6.2
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 6.3
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 6.3.1
Imposta uguale a .
Passaggio 6.3.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.3.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 6.3.2.2
Non è possibile risolvere l'equazione perché è indefinita.
Indefinito
Passaggio 6.3.2.3
Non c'è soluzione per
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 6.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 6.4.1
Imposta uguale a .
Passaggio 6.4.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 6.4.2.1
Somma a entrambi i lati dell'equazione.
Passaggio 6.4.2.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 6.4.2.2.1
Dividi per ciascun termine in .
Passaggio 6.4.2.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 6.4.2.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 6.4.2.2.2.1.1
Elimina il fattore comune.
Passaggio 6.4.2.2.2.1.2
Dividi per .
Passaggio 6.4.2.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 6.4.2.2.3.1
Dividi per .
Passaggio 6.5
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 7
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 7.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 8
Punti critici da calcolare.
Passaggio 9
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 10
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 10.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 10.1.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 10.1.1.1
Moltiplica per .
Passaggio 10.1.1.2
Eleva alla potenza di .
Passaggio 10.1.1.3
Moltiplica per .
Passaggio 10.1.2
Sottrai da .
Passaggio 10.1.3
Somma e .
Passaggio 10.1.4
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 10.1.5
Moltiplica per .
Passaggio 10.1.6
Somma e .
Passaggio 10.1.7
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 10.1.8
Moltiplica per .
Passaggio 10.1.9
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 10.1.9.1
Moltiplica per .
Passaggio 10.1.9.2
Eleva alla potenza di .
Passaggio 10.1.9.3
Moltiplica per .
Passaggio 10.1.10
Sottrai da .
Passaggio 10.1.11
Somma e .
Passaggio 10.1.12
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 10.1.13
e .
Passaggio 10.2
Somma e .
Passaggio 11
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 12
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 12.1
Sostituisci la variabile con nell'espressione.
Passaggio 12.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 12.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 12.2.1.1
Moltiplica per .
Passaggio 12.2.1.2
Eleva alla potenza di .
Passaggio 12.2.1.3
Moltiplica per .
Passaggio 12.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 12.2.2.1
Sottrai da .
Passaggio 12.2.2.2
Somma e .
Passaggio 12.2.3
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 12.2.4
La risposta finale è .
Passaggio 13
Questi sono gli estremi locali per .
è un minimo locale
Passaggio 14