Calcolo Esempi

Trovare il Max e Min Assoluto nell''Intervallo f(x)=x^3-3x^2+3 , (-1,3)
,
Passaggio 1
Trova i punti critici.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.1.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2.2
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 1.1.1.2.3
Moltiplica per .
Passaggio 1.1.1.3
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 1.1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.3.2
Somma e .
Passaggio 1.1.2
La derivata prima di rispetto a è .
Passaggio 1.2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 1.2.1
Poni la derivata prima uguale a .
Passaggio 1.2.2
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.2.2.1
Scomponi da .
Passaggio 1.2.2.2
Scomponi da .
Passaggio 1.2.2.3
Scomponi da .
Passaggio 1.2.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 1.2.4
Imposta uguale a .
Passaggio 1.2.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 1.2.5.1
Imposta uguale a .
Passaggio 1.2.5.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.2.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 1.3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 1.3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 1.4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 1.4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 1.4.1.1
Sostituisci per .
Passaggio 1.4.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.1.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.4.1.2.1.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.4.1.2.1.3
Moltiplica per .
Passaggio 1.4.1.2.2
Semplifica aggiungendo i numeri.
Tocca per altri passaggi...
Passaggio 1.4.1.2.2.1
Somma e .
Passaggio 1.4.1.2.2.2
Somma e .
Passaggio 1.4.2
Calcola per .
Tocca per altri passaggi...
Passaggio 1.4.2.1
Sostituisci per .
Passaggio 1.4.2.2
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.2.2.1.1
Eleva alla potenza di .
Passaggio 1.4.2.2.1.2
Eleva alla potenza di .
Passaggio 1.4.2.2.1.3
Moltiplica per .
Passaggio 1.4.2.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 1.4.2.2.2.1
Sottrai da .
Passaggio 1.4.2.2.2.2
Somma e .
Passaggio 1.4.3
Elenca tutti i punti.
Passaggio 2
Usa il test della derivata prima per determinare quale punto può essere il massimo o il minimo.
Tocca per altri passaggi...
Passaggio 2.1
Dividi in intervalli separati intorno ai valori che rendono la derivata prima o indefinita.
Passaggio 2.2
Sostituisci qualsiasi numero, come ad esempio , dall'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 2.2.1
Sostituisci la variabile con nell'espressione.
Passaggio 2.2.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 2.2.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.2.2.1.1
Eleva alla potenza di .
Passaggio 2.2.2.1.2
Moltiplica per .
Passaggio 2.2.2.1.3
Moltiplica per .
Passaggio 2.2.2.2
Somma e .
Passaggio 2.2.2.3
La risposta finale è .
Passaggio 2.3
Sostituisci qualsiasi numero, come ad esempio , dall'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 2.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 2.3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.3.2.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 2.3.2.1.2
Moltiplica per .
Passaggio 2.3.2.1.3
Moltiplica per .
Passaggio 2.3.2.2
Sottrai da .
Passaggio 2.3.2.3
La risposta finale è .
Passaggio 2.4
Sostituisci qualsiasi numero, come ad esempio , dall'intervallo nella derivata prima per controllare se il risultato è negativo o positivo.
Tocca per altri passaggi...
Passaggio 2.4.1
Sostituisci la variabile con nell'espressione.
Passaggio 2.4.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 2.4.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.4.2.1.1
Eleva alla potenza di .
Passaggio 2.4.2.1.2
Moltiplica per .
Passaggio 2.4.2.1.3
Moltiplica per .
Passaggio 2.4.2.2
Sottrai da .
Passaggio 2.4.2.3
La risposta finale è .
Passaggio 2.5
Dato che la derivata prima ha cambiato segno da positivo a negativo intorno a , allora è un massimo locale.
è un massimo locale
Passaggio 2.6
Dato che la derivata prima ha cambiato segno da negativo a positivo intorno a , allora è un minimo locale.
è un minimo locale
Passaggio 2.7
Questi sono gli estremi locali per .
è un massimo locale
è un minimo locale
è un massimo locale
è un minimo locale
Passaggio 3
Confronta i valori trovati per ciascun valore di per determinare il massimo e il minimo assoluti su un intervallo dato. Il massimo comparirà in corrispondenza del valore più alto, mentre il minimo comparirà in corrispondenza del valore più basso.
Massimo assoluto:
Minimo assoluto:
Passaggio 4