Calcolo Esempi

Trovare il Max e Min Assoluto nell''Intervallo f(x)=- radice quadrata di x-3 ; 4<=x<=12
;
Passaggio 1
Trova i punti critici.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Differenzia usando la regola multipla costante.
Tocca per altri passaggi...
Passaggio 1.1.1.1.1
Usa per riscrivere come .
Passaggio 1.1.1.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.1.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.1.1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.1.4
e .
Passaggio 1.1.1.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.1.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.1.1.6.1
Moltiplica per .
Passaggio 1.1.1.6.2
Sottrai da .
Passaggio 1.1.1.7
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 1.1.1.7.1
Sposta il negativo davanti alla frazione.
Passaggio 1.1.1.7.2
e .
Passaggio 1.1.1.7.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.1.1.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.9
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.11
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.1.11.1
Somma e .
Passaggio 1.1.1.11.2
Moltiplica per .
Passaggio 1.1.2
La derivata prima di rispetto a è .
Passaggio 1.2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 1.2.1
Poni la derivata prima uguale a .
Passaggio 1.2.2
Poni il numeratore uguale a zero.
Passaggio 1.2.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 1.3
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 1.3.1
Converti le espressioni con gli esponenti frazionari in radicali.
Tocca per altri passaggi...
Passaggio 1.3.1.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 1.3.1.2
Qualsiasi cosa elevata a è la base stessa.
Passaggio 1.3.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 1.3.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.3.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al quadrato entrambi i lati dell'equazione.
Passaggio 1.3.3.2
Semplifica ogni lato dell'equazione.
Tocca per altri passaggi...
Passaggio 1.3.3.2.1
Usa per riscrivere come .
Passaggio 1.3.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.3.3.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 1.3.3.2.2.1.1
Applica la regola del prodotto a .
Passaggio 1.3.3.2.2.1.2
Eleva alla potenza di .
Passaggio 1.3.3.2.2.1.3
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 1.3.3.2.2.1.3.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 1.3.3.2.2.1.3.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.3.3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 1.3.3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 1.3.3.2.2.1.4
Semplifica.
Passaggio 1.3.3.2.2.1.5
Applica la proprietà distributiva.
Passaggio 1.3.3.2.2.1.6
Moltiplica per .
Passaggio 1.3.3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.3.3.3
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.3.3.3.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.3.3.3.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 1.3.3.3.2.1
Dividi per ciascun termine in .
Passaggio 1.3.3.3.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 1.3.3.3.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.3.3.3.2.2.1.1
Elimina il fattore comune.
Passaggio 1.3.3.3.2.2.1.2
Dividi per .
Passaggio 1.3.3.3.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.3.3.2.3.1
Dividi per .
Passaggio 1.3.4
Imposta il radicando in in modo che minore di per individuare dove l'espressione è indefinita.
Passaggio 1.3.5
Aggiungi a entrambi i lati della diseguaglianza.
Passaggio 1.3.6
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
Passaggio 1.4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Tocca per altri passaggi...
Passaggio 1.4.1
Calcola per .
Tocca per altri passaggi...
Passaggio 1.4.1.1
Sostituisci a .
Passaggio 1.4.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1.2.1
Sottrai da .
Passaggio 1.4.1.2.2
Riscrivi come .
Passaggio 1.4.1.2.3
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 1.4.1.2.4
Moltiplica per .
Passaggio 1.4.2
Elenca tutti i punti.
Passaggio 2
Escludi i punti che non si trovano sull'intervallo.
Passaggio 3
Calcola agli estremi inclusi.
Tocca per altri passaggi...
Passaggio 3.1
Calcola per .
Tocca per altri passaggi...
Passaggio 3.1.1
Sostituisci a .
Passaggio 3.1.2
Semplifica.
Tocca per altri passaggi...
Passaggio 3.1.2.1
Sottrai da .
Passaggio 3.1.2.2
Qualsiasi radice di è .
Passaggio 3.1.2.3
Moltiplica per .
Passaggio 3.2
Calcola per .
Tocca per altri passaggi...
Passaggio 3.2.1
Sostituisci a .
Passaggio 3.2.2
Semplifica.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Sottrai da .
Passaggio 3.2.2.2
Riscrivi come .
Passaggio 3.2.2.3
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 3.2.2.4
Moltiplica per .
Passaggio 3.3
Elenca tutti i punti.
Passaggio 4
Confronta i valori trovati per ciascun valore di per determinare il massimo e il minimo assoluti su un intervallo dato. Il massimo comparirà in corrispondenza del valore più alto, mentre il minimo comparirà in corrispondenza del valore più basso.
Massimo assoluto:
Minimo assoluto:
Passaggio 5