Calcolo Esempi

Trovare il Max e Min Assoluto nell''Intervallo y=x^2
Passaggio 1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.2.1
Dividi per ciascun termine in .
Passaggio 5.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.2.2.1.1
Elimina il fattore comune.
Passaggio 5.2.2.1.2
Dividi per .
Passaggio 5.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.2.3.1
Dividi per .
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 10
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 10.1
Sostituisci la variabile con nell'espressione.
Passaggio 10.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 10.2.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 10.2.2
La risposta finale è .
Passaggio 11
Questi sono gli estremi locali per .
è un minimo locale
Passaggio 12