Inserisci un problema...
Calcolo Esempi
, ?
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Trova la derivata prima.
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Calcola .
Passaggio 1.1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.2.3
Moltiplica per .
Passaggio 1.1.1.3
Calcola .
Passaggio 1.1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.3.3
Moltiplica per .
Passaggio 1.1.1.4
Differenzia usando la regola della costante.
Passaggio 1.1.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.4.2
Somma e .
Passaggio 1.1.2
La derivata prima di rispetto a è .
Passaggio 1.2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Passaggio 1.2.1
Poni la derivata prima uguale a .
Passaggio 1.2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2.3
Dividi per ciascun termine in e semplifica.
Passaggio 1.2.3.1
Dividi per ciascun termine in .
Passaggio 1.2.3.2
Semplifica il lato sinistro.
Passaggio 1.2.3.2.1
Elimina il fattore comune di .
Passaggio 1.2.3.2.1.1
Elimina il fattore comune.
Passaggio 1.2.3.2.1.2
Dividi per .
Passaggio 1.2.3.3
Semplifica il lato destro.
Passaggio 1.2.3.3.1
Dividi per .
Passaggio 1.3
Trova i valori per cui la derivata è indefinita.
Passaggio 1.3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 1.4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Passaggio 1.4.1
Calcola per .
Passaggio 1.4.1.1
Sostituisci a .
Passaggio 1.4.1.2
Semplifica.
Passaggio 1.4.1.2.1
Semplifica ciascun termine.
Passaggio 1.4.1.2.1.1
Eleva alla potenza di .
Passaggio 1.4.1.2.1.2
Moltiplica per .
Passaggio 1.4.1.2.1.3
Moltiplica per .
Passaggio 1.4.1.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 1.4.1.2.2.1
Somma e .
Passaggio 1.4.1.2.2.2
Sottrai da .
Passaggio 1.4.2
Elenca tutti i punti.
Passaggio 2
Escludi i punti che non si trovano sull'intervallo.
Passaggio 3
Passaggio 3.1
Calcola per .
Passaggio 3.1.1
Sostituisci a .
Passaggio 3.1.2
Semplifica ciascun termine.
Passaggio 3.1.2.1
Usa la regola della potenza per distribuire l'esponente.
Passaggio 3.1.2.1.1
Applica la regola del prodotto a .
Passaggio 3.1.2.1.2
Applica la regola del prodotto a .
Passaggio 3.1.2.2
Eleva alla potenza di .
Passaggio 3.1.2.3
Riscrivi come .
Passaggio 3.1.2.4
Moltiplica per .
Passaggio 3.1.2.5
Moltiplica per .
Passaggio 3.1.2.6
Moltiplica per .
Passaggio 3.2
Calcola per .
Passaggio 3.2.1
Sostituisci a .
Passaggio 3.2.2
Semplifica.
Passaggio 3.2.2.1
Semplifica ciascun termine.
Passaggio 3.2.2.1.1
Eleva alla potenza di .
Passaggio 3.2.2.1.2
Moltiplica per .
Passaggio 3.2.2.1.3
Moltiplica per .
Passaggio 3.2.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 3.2.2.2.1
Somma e .
Passaggio 3.2.2.2.2
Sottrai da .
Passaggio 3.3
Elenca tutti i punti.
Passaggio 4
Poiché non c'è alcun valore di che rende la derivata prima uguale a , non ci sono estremi locali.
Nessun estremo locale
Passaggio 5
Confronta i valori trovati per ciascun valore di per determinare il massimo e il minimo assoluti su un intervallo dato. Il massimo comparirà in corrispondenza del valore più alto, mentre il minimo comparirà in corrispondenza del valore più basso.
Massimo assoluto:
Nessun minimo assoluto
Passaggio 6