Calcolo Esempi

Integrare Usando la Sostituzione di Variabile integrale di x^3(1-x^2)^(3/2) rispetto a x
Passaggio 1
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 1.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia .
Passaggio 1.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.1.4
Sottrai da .
Passaggio 1.2
Riscrivi il problema usando e .
Passaggio 2
Semplifica.
Tocca per altri passaggi...
Passaggio 2.1
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.1.1
Usa per riscrivere come .
Passaggio 2.1.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.1.3
e .
Passaggio 2.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.1.4.1
Elimina il fattore comune.
Passaggio 2.1.4.2
Riscrivi l'espressione.
Passaggio 2.1.5
Semplifica.
Passaggio 2.2
Sposta il negativo davanti alla frazione.
Passaggio 2.3
e .
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1
Applica la proprietà distributiva.
Passaggio 4.2
e .
Passaggio 4.3
Metti in evidenza il valore negativo.
Passaggio 4.4
Eleva alla potenza di .
Passaggio 4.5
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.6
Scrivi come una frazione con un comune denominatore.
Passaggio 4.7
Riduci i numeratori su un comune denominatore.
Passaggio 4.8
Somma e .
Passaggio 4.9
Moltiplica per .
Passaggio 5
Sposta il negativo davanti alla frazione.
Passaggio 6
Dividi il singolo integrale in più integrali.
Passaggio 7
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 8
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 9
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 10
e .
Passaggio 11
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 12
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 13
Semplifica.
Tocca per altri passaggi...
Passaggio 13.1
e .
Passaggio 13.2
Semplifica.
Passaggio 14
Riordina i termini.
Passaggio 15
Sostituisci tutte le occorrenze di con .