Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Sia . Trova .
Passaggio 1.1.1
Differenzia .
Passaggio 1.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.5
Somma e .
Passaggio 1.2
Riscrivi il problema usando e .
Passaggio 2
Passaggio 2.1
Riscrivi come .
Passaggio 2.1.1
Usa per riscrivere come .
Passaggio 2.1.2
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.1.3
e .
Passaggio 2.1.4
Elimina il fattore comune di e .
Passaggio 2.1.4.1
Scomponi da .
Passaggio 2.1.4.2
Elimina i fattori comuni.
Passaggio 2.1.4.2.1
Scomponi da .
Passaggio 2.1.4.2.2
Elimina il fattore comune.
Passaggio 2.1.4.2.3
Riscrivi l'espressione.
Passaggio 2.1.4.2.4
Dividi per .
Passaggio 2.2
e .
Passaggio 2.3
e .
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Usa per riscrivere come .
Passaggio 5
Passaggio 5.1
Sia . Trova .
Passaggio 5.1.1
Differenzia .
Passaggio 5.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.5
Somma e .
Passaggio 5.2
Riscrivi il problema usando e .
Passaggio 6
Passaggio 6.1
Sia . Trova .
Passaggio 6.1.1
Differenzia .
Passaggio 6.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 6.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 6.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.5
Somma e .
Passaggio 6.2
Riscrivi il problema usando e .
Passaggio 7
Passaggio 7.1
Riscrivi come .
Passaggio 7.2
Applica la proprietà distributiva.
Passaggio 7.3
Applica la proprietà distributiva.
Passaggio 7.4
Applica la proprietà distributiva.
Passaggio 7.5
Applica la proprietà distributiva.
Passaggio 7.6
Applica la proprietà distributiva.
Passaggio 7.7
Applica la proprietà distributiva.
Passaggio 7.8
Riordina e .
Passaggio 7.9
Eleva alla potenza di .
Passaggio 7.10
Eleva alla potenza di .
Passaggio 7.11
Usa la regola della potenza per combinare gli esponenti.
Passaggio 7.12
Somma e .
Passaggio 7.13
Usa la regola della potenza per combinare gli esponenti.
Passaggio 7.14
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 7.15
e .
Passaggio 7.16
Riduci i numeratori su un comune denominatore.
Passaggio 7.17
Semplifica il numeratore.
Passaggio 7.17.1
Moltiplica per .
Passaggio 7.17.2
Somma e .
Passaggio 7.18
Metti in evidenza il valore negativo.
Passaggio 7.19
Eleva alla potenza di .
Passaggio 7.20
Usa la regola della potenza per combinare gli esponenti.
Passaggio 7.21
Scrivi come una frazione con un comune denominatore.
Passaggio 7.22
Riduci i numeratori su un comune denominatore.
Passaggio 7.23
Somma e .
Passaggio 7.24
Metti in evidenza il valore negativo.
Passaggio 7.25
Eleva alla potenza di .
Passaggio 7.26
Usa la regola della potenza per combinare gli esponenti.
Passaggio 7.27
Scrivi come una frazione con un comune denominatore.
Passaggio 7.28
Riduci i numeratori su un comune denominatore.
Passaggio 7.29
Somma e .
Passaggio 7.30
Moltiplica per .
Passaggio 7.31
Moltiplica per .
Passaggio 7.32
Sottrai da .
Passaggio 7.33
Riordina e .
Passaggio 8
Dividi il singolo integrale in più integrali.
Passaggio 9
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 10
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 11
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 12
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 13
Semplifica.
Passaggio 14
Riordina i termini.
Passaggio 15
Passaggio 15.1
Sostituisci tutte le occorrenze di con .
Passaggio 15.2
Sostituisci tutte le occorrenze di con .
Passaggio 15.3
Sostituisci tutte le occorrenze di con .