Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Scomponi la frazione e moltiplica per il comune denominatore.
Passaggio 1.1.1
Scomponi la frazione.
Passaggio 1.1.1.1
Scomponi da .
Passaggio 1.1.1.1.1
Scomponi da .
Passaggio 1.1.1.1.2
Scomponi da .
Passaggio 1.1.1.1.3
Scomponi da .
Passaggio 1.1.1.2
Riscrivi come .
Passaggio 1.1.1.3
Poiché entrambi i termini sono dei cubi perfetti, fattorizza utilizzando la formula della differenza di cubi, dove e .
Passaggio 1.1.1.4
Scomponi.
Passaggio 1.1.1.4.1
Semplifica.
Passaggio 1.1.1.4.1.1
Moltiplica per .
Passaggio 1.1.1.4.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.1.1.4.2
Rimuovi le parentesi non necessarie.
Passaggio 1.1.1.5
Scomponi da .
Passaggio 1.1.1.5.1
Scomponi da .
Passaggio 1.1.1.5.2
Scomponi da .
Passaggio 1.1.1.5.3
Scomponi da .
Passaggio 1.1.2
Per ogni fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore è di 3° ordine, sono necessari termini nel numeratore. Il numero di termini richiesti nel numeratore è sempre uguale all'ordine del fattore nel denominatore.
Passaggio 1.1.3
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 1.1.4
Semplifica i termini.
Passaggio 1.1.4.1
Elimina il fattore comune di .
Passaggio 1.1.4.1.1
Elimina il fattore comune.
Passaggio 1.1.4.1.2
Riscrivi l'espressione.
Passaggio 1.1.4.2
Elimina il fattore comune di .
Passaggio 1.1.4.2.1
Elimina il fattore comune.
Passaggio 1.1.4.2.2
Dividi per .
Passaggio 1.1.4.3
Applica la proprietà distributiva.
Passaggio 1.1.4.4
Moltiplica per .
Passaggio 1.1.5
Espandi moltiplicando ciascun termine della prima espressione per ciascun termine della seconda espressione.
Passaggio 1.1.6
Semplifica i termini.
Passaggio 1.1.6.1
Semplifica ciascun termine.
Passaggio 1.1.6.1.1
Moltiplica per sommando gli esponenti.
Passaggio 1.1.6.1.1.1
Sposta .
Passaggio 1.1.6.1.1.2
Moltiplica per .
Passaggio 1.1.6.1.1.2.1
Eleva alla potenza di .
Passaggio 1.1.6.1.1.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.6.1.1.3
Somma e .
Passaggio 1.1.6.1.2
Moltiplica per sommando gli esponenti.
Passaggio 1.1.6.1.2.1
Sposta .
Passaggio 1.1.6.1.2.2
Moltiplica per .
Passaggio 1.1.6.1.3
Moltiplica per .
Passaggio 1.1.6.1.4
Moltiplica per .
Passaggio 1.1.6.2
Combina i termini opposti in .
Passaggio 1.1.6.2.1
Sottrai da .
Passaggio 1.1.6.2.2
Somma e .
Passaggio 1.1.6.2.3
Sottrai da .
Passaggio 1.1.6.2.4
Somma e .
Passaggio 1.1.7
Semplifica ciascun termine.
Passaggio 1.1.7.1
Elimina il fattore comune di .
Passaggio 1.1.7.1.1
Elimina il fattore comune.
Passaggio 1.1.7.1.2
Dividi per .
Passaggio 1.1.7.2
Applica la proprietà distributiva.
Passaggio 1.1.7.3
Sposta alla sinistra di .
Passaggio 1.1.7.4
Elimina il fattore comune di .
Passaggio 1.1.7.4.1
Elimina il fattore comune.
Passaggio 1.1.7.4.2
Dividi per .
Passaggio 1.1.7.5
Applica la proprietà distributiva.
Passaggio 1.1.7.6
Semplifica.
Passaggio 1.1.7.6.1
Moltiplica per sommando gli esponenti.
Passaggio 1.1.7.6.1.1
Sposta .
Passaggio 1.1.7.6.1.2
Moltiplica per .
Passaggio 1.1.7.6.1.2.1
Eleva alla potenza di .
Passaggio 1.1.7.6.1.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.1.7.6.1.3
Somma e .
Passaggio 1.1.7.6.2
Moltiplica per sommando gli esponenti.
Passaggio 1.1.7.6.2.1
Sposta .
Passaggio 1.1.7.6.2.2
Moltiplica per .
Passaggio 1.1.8
Sposta .
Passaggio 1.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Passaggio 1.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.3
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.4
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.5
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 1.3
Risolvi il sistema di equazioni.
Passaggio 1.3.1
Riscrivi l'equazione come .
Passaggio 1.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Passaggio 1.3.2.1
Riscrivi l'equazione come .
Passaggio 1.3.2.2
Riscrivi l'equazione come .
Passaggio 1.3.2.3
Dividi per ciascun termine in e semplifica.
Passaggio 1.3.2.3.1
Dividi per ciascun termine in .
Passaggio 1.3.2.3.2
Semplifica il lato sinistro.
Passaggio 1.3.2.3.2.1
Elimina il fattore comune di .
Passaggio 1.3.2.3.2.1.1
Elimina il fattore comune.
Passaggio 1.3.2.3.2.1.2
Dividi per .
Passaggio 1.3.2.3.3
Semplifica il lato destro.
Passaggio 1.3.2.3.3.1
Elimina il fattore comune di e .
Passaggio 1.3.2.3.3.1.1
Scomponi da .
Passaggio 1.3.2.3.3.1.2
Elimina i fattori comuni.
Passaggio 1.3.2.3.3.1.2.1
Scomponi da .
Passaggio 1.3.2.3.3.1.2.2
Elimina il fattore comune.
Passaggio 1.3.2.3.3.1.2.3
Riscrivi l'espressione.
Passaggio 1.3.3
Sostituisci tutte le occorrenze di con in ogni equazione.
Passaggio 1.3.3.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.3.2
Semplifica il lato destro.
Passaggio 1.3.3.2.1
Rimuovi le parentesi.
Passaggio 1.3.4
Risolvi per in .
Passaggio 1.3.4.1
Riscrivi l'equazione come .
Passaggio 1.3.4.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 1.3.4.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.3.4.2.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.3.4.2.3
e .
Passaggio 1.3.4.2.4
Riduci i numeratori su un comune denominatore.
Passaggio 1.3.4.2.5
Semplifica il numeratore.
Passaggio 1.3.4.2.5.1
Moltiplica per .
Passaggio 1.3.4.2.5.2
Sottrai da .
Passaggio 1.3.5
Risolvi il sistema di equazioni.
Passaggio 1.3.6
Elenca tutte le soluzioni.
Passaggio 1.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per , , e .
Passaggio 1.5
Semplifica.
Passaggio 1.5.1
Semplifica il numeratore.
Passaggio 1.5.1.1
Somma e .
Passaggio 1.5.1.2
Scomponi da .
Passaggio 1.5.1.2.1
Scomponi da .
Passaggio 1.5.1.2.2
Scomponi da .
Passaggio 1.5.1.2.3
Scomponi da .
Passaggio 1.5.1.3
e .
Passaggio 1.5.1.4
Somma e .
Passaggio 1.5.2
e .
Passaggio 1.5.3
Semplifica il numeratore.
Passaggio 1.5.3.1
Eleva alla potenza di .
Passaggio 1.5.3.2
Eleva alla potenza di .
Passaggio 1.5.3.3
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 1.5.3.4
Somma e .
Passaggio 1.5.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5.5
Moltiplica per .
Passaggio 1.5.6
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5.7
Moltiplica per .
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
L'integrale di rispetto a è .
Passaggio 5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6
Passaggio 6.1
Sia . Trova .
Passaggio 6.1.1
Differenzia .
Passaggio 6.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 6.1.3
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 6.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.5
Somma e .
Passaggio 6.2
Riscrivi il problema utilizzando e .
Passaggio 7
Passaggio 7.1
Moltiplica per .
Passaggio 7.2
Sposta alla sinistra di .
Passaggio 8
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 9
Passaggio 9.1
Moltiplica per .
Passaggio 9.2
Moltiplica per .
Passaggio 9.3
Elimina il fattore comune di e .
Passaggio 9.3.1
Scomponi da .
Passaggio 9.3.2
Elimina i fattori comuni.
Passaggio 9.3.2.1
Scomponi da .
Passaggio 9.3.2.2
Elimina il fattore comune.
Passaggio 9.3.2.3
Riscrivi l'espressione.
Passaggio 10
L'integrale di rispetto a è .
Passaggio 11
Semplifica.
Passaggio 12
Sostituisci tutte le occorrenze di con .