Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
+ | - |
Passaggio 1.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+ | - |
Passaggio 1.3
Moltiplica il nuovo quoziente per il divisore.
+ | - | ||||||
+ | + |
Passaggio 1.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+ | - | ||||||
- | - |
Passaggio 1.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+ | - | ||||||
- | - | ||||||
- |
Passaggio 1.6
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Applica la regola costante.
Passaggio 4
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6
Moltiplica per .
Passaggio 7
Passaggio 7.1
Sia . Trova .
Passaggio 7.1.1
Differenzia .
Passaggio 7.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 7.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 7.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 7.1.5
Somma e .
Passaggio 7.2
Sostituisci il limite inferiore a in .
Passaggio 7.3
Somma e .
Passaggio 7.4
Sostituisci il limite superiore a in .
Passaggio 7.5
Somma e .
Passaggio 7.6
I valori trovati per e saranno usati per calcolare l'integrale definito.
Passaggio 7.7
Riscrivi il problema usando , e i nuovi limiti dell'integrazione.
Passaggio 8
L'integrale di rispetto a è .
Passaggio 9
Passaggio 9.1
Calcola per e per .
Passaggio 9.2
Calcola per e per .
Passaggio 9.3
Somma e .
Passaggio 10
Usa la proprietà del quoziente dei logaritmi, .
Passaggio 11
Passaggio 11.1
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 11.2
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 11.3
Dividi per .
Passaggio 12
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale:
Passaggio 13