Calcolo Esempi

Trovare la Primitiva (e^x+1)^2
Passaggio 1
Scrivi come funzione.
Passaggio 2
È possibile trovare la funzione determinando l'integrale indefinito della derivata .
Passaggio 3
Imposta l'integrale per risolvere.
Passaggio 4
Semplifica.
Tocca per altri passaggi...
Passaggio 4.1
Riscrivi come .
Passaggio 4.2
Espandi usando il metodo FOIL.
Tocca per altri passaggi...
Passaggio 4.2.1
Applica la proprietà distributiva.
Passaggio 4.2.2
Applica la proprietà distributiva.
Passaggio 4.2.3
Applica la proprietà distributiva.
Passaggio 4.3
Semplifica e combina i termini simili.
Tocca per altri passaggi...
Passaggio 4.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 4.3.1.1
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 4.3.1.1.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 4.3.1.1.2
Somma e .
Passaggio 4.3.1.2
Moltiplica per .
Passaggio 4.3.1.3
Moltiplica per .
Passaggio 4.3.1.4
Moltiplica per .
Passaggio 4.3.2
Somma e .
Passaggio 5
Dividi il singolo integrale in più integrali.
Passaggio 6
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 6.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 6.1.1
Differenzia .
Passaggio 6.1.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 6.1.4
Moltiplica per .
Passaggio 6.2
Riscrivi il problema usando e .
Passaggio 7
e .
Passaggio 8
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 9
L'integrale di rispetto a è .
Passaggio 10
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 11
L'integrale di rispetto a è .
Passaggio 12
Applica la regola costante.
Passaggio 13
Semplifica.
Passaggio 14
Sostituisci tutte le occorrenze di con .
Passaggio 15
La risposta è l'antiderivata della funzione .