Calcolo Esempi

Integrare Usando Frazioni Parziali integrale di (2x^2+3)/(x^3-2x^2+x) rispetto a x
Passaggio 1
Scrivi la frazione usando la scomposizione della frazione parziale.
Tocca per altri passaggi...
Passaggio 1.1
Scomponi la frazione e moltiplica per il comune denominatore.
Tocca per altri passaggi...
Passaggio 1.1.1
Scomponi la frazione.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 1.1.1.1.1
Scomponi da .
Passaggio 1.1.1.1.2
Scomponi da .
Passaggio 1.1.1.1.3
Eleva alla potenza di .
Passaggio 1.1.1.1.4
Scomponi da .
Passaggio 1.1.1.1.5
Scomponi da .
Passaggio 1.1.1.1.6
Scomponi da .
Passaggio 1.1.1.2
Scomponi usando la regola del quadrato perfetto.
Tocca per altri passaggi...
Passaggio 1.1.1.2.1
Riscrivi come .
Passaggio 1.1.1.2.2
Verifica che il termine centrale sia il doppio del prodotto dei numeri elevati alla seconda potenza nel primo e nel terzo termine.
Passaggio 1.1.1.2.3
Riscrivi il polinomio.
Passaggio 1.1.1.2.4
Scomponi usando la regola del trinomio perfetto al quadrato , dove e .
Passaggio 1.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 1.1.3
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 1.1.4
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 1.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.5.1
Elimina il fattore comune.
Passaggio 1.1.5.2
Riscrivi l'espressione.
Passaggio 1.1.6
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.6.1
Elimina il fattore comune.
Passaggio 1.1.6.2
Dividi per .
Passaggio 1.1.7
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.7.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.7.1.1
Elimina il fattore comune.
Passaggio 1.1.7.1.2
Dividi per .
Passaggio 1.1.7.2
Riscrivi come .
Passaggio 1.1.7.3
Espandi usando il metodo FOIL.
Tocca per altri passaggi...
Passaggio 1.1.7.3.1
Applica la proprietà distributiva.
Passaggio 1.1.7.3.2
Applica la proprietà distributiva.
Passaggio 1.1.7.3.3
Applica la proprietà distributiva.
Passaggio 1.1.7.4
Semplifica e combina i termini simili.
Tocca per altri passaggi...
Passaggio 1.1.7.4.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.7.4.1.1
Moltiplica per .
Passaggio 1.1.7.4.1.2
Sposta alla sinistra di .
Passaggio 1.1.7.4.1.3
Riscrivi come .
Passaggio 1.1.7.4.1.4
Riscrivi come .
Passaggio 1.1.7.4.1.5
Moltiplica per .
Passaggio 1.1.7.4.2
Sottrai da .
Passaggio 1.1.7.5
Applica la proprietà distributiva.
Passaggio 1.1.7.6
Semplifica.
Tocca per altri passaggi...
Passaggio 1.1.7.6.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.1.7.6.2
Moltiplica per .
Passaggio 1.1.7.7
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.1.7.7.1
Elimina il fattore comune.
Passaggio 1.1.7.7.2
Dividi per .
Passaggio 1.1.7.8
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 1.1.7.8.1
Scomponi da .
Passaggio 1.1.7.8.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.1.7.8.2.1
Moltiplica per .
Passaggio 1.1.7.8.2.2
Elimina il fattore comune.
Passaggio 1.1.7.8.2.3
Riscrivi l'espressione.
Passaggio 1.1.7.8.2.4
Dividi per .
Passaggio 1.1.7.9
Applica la proprietà distributiva.
Passaggio 1.1.7.10
Moltiplica per .
Passaggio 1.1.7.11
Sposta alla sinistra di .
Passaggio 1.1.7.12
Riscrivi come .
Passaggio 1.1.7.13
Applica la proprietà distributiva.
Passaggio 1.1.7.14
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 1.1.8
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 1.1.8.1
Sposta .
Passaggio 1.1.8.2
Riordina e .
Passaggio 1.1.8.3
Sposta .
Passaggio 1.1.8.4
Sposta .
Passaggio 1.1.8.5
Sposta .
Passaggio 1.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Tocca per altri passaggi...
Passaggio 1.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.3
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.4
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 1.3
Risolvi il sistema di equazioni.
Tocca per altri passaggi...
Passaggio 1.3.1
Riscrivi l'equazione come .
Passaggio 1.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 1.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.2.2.1
Rimuovi le parentesi.
Passaggio 1.3.2.3
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.2.4
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.2.4.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.3.2.4.1.1
Moltiplica per .
Passaggio 1.3.2.4.1.2
Riscrivi come .
Passaggio 1.3.3
Risolvi per in .
Tocca per altri passaggi...
Passaggio 1.3.3.1
Riscrivi l'equazione come .
Passaggio 1.3.3.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.3.3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.3.3.2.2
Sottrai da .
Passaggio 1.3.4
Sostituisci tutte le occorrenze di con in ogni equazione.
Tocca per altri passaggi...
Passaggio 1.3.4.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.4.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 1.3.4.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 1.3.4.2.1.1
Moltiplica per .
Passaggio 1.3.4.2.1.2
Somma e .
Passaggio 1.3.5
Risolvi per in .
Tocca per altri passaggi...
Passaggio 1.3.5.1
Riscrivi l'equazione come .
Passaggio 1.3.5.2
Somma a entrambi i lati dell'equazione.
Passaggio 1.3.6
Risolvi il sistema di equazioni.
Passaggio 1.3.7
Elenca tutte le soluzioni.
Passaggio 1.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per , e .
Passaggio 1.5
Sposta il negativo davanti alla frazione.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
L'integrale di rispetto a è .
Passaggio 5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 6.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 6.1.1
Differenzia .
Passaggio 6.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 6.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 6.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.5
Somma e .
Passaggio 6.2
Riscrivi il problema usando e .
Passaggio 7
Applica le regole di base degli esponenti.
Tocca per altri passaggi...
Passaggio 7.1
Sposta fuori dal denominatore elevandolo alla potenza di .
Passaggio 7.2
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 7.2.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 7.2.2
Moltiplica per .
Passaggio 8
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 9
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 10
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 10.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 10.1.1
Differenzia .
Passaggio 10.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 10.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 10.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 10.1.5
Somma e .
Passaggio 10.2
Riscrivi il problema usando e .
Passaggio 11
L'integrale di rispetto a è .
Passaggio 12
Semplifica.
Passaggio 13
Sostituisci al posto di ogni variabile di integrazione per sostituzione.
Tocca per altri passaggi...
Passaggio 13.1
Sostituisci tutte le occorrenze di con .
Passaggio 13.2
Sostituisci tutte le occorrenze di con .