Calcolo Esempi

Trovare il Valore Massimo/Minimo y=1/3x^3+x^2-3x-8
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
e .
Passaggio 1.2.4
e .
Passaggio 1.2.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 1.2.5.1
Elimina il fattore comune.
Passaggio 1.2.5.2
Dividi per .
Passaggio 1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4.3
Moltiplica per .
Passaggio 1.5
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 1.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.5.2
Somma e .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Differenzia.
Tocca per altri passaggi...
Passaggio 2.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Moltiplica per .
Passaggio 2.3
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Somma e .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 4.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
e .
Passaggio 4.1.2.4
e .
Passaggio 4.1.2.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 4.1.2.5.1
Elimina il fattore comune.
Passaggio 4.1.2.5.2
Dividi per .
Passaggio 4.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.4
Calcola .
Tocca per altri passaggi...
Passaggio 4.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.4.3
Moltiplica per .
Passaggio 4.1.5
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 4.1.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5.2
Somma e .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi usando il metodo AC.
Tocca per altri passaggi...
Passaggio 5.2.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 5.2.2
Scrivi la forma fattorizzata usando questi interi.
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 5.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Trova i valori per cui la derivata è indefinita.
Tocca per altri passaggi...
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 9.1
Moltiplica per .
Passaggio 9.2
Somma e .
Passaggio 10
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 11
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 11.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 11.2.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 11.2.1.2
Moltiplica per .
Passaggio 11.2.1.3
Uno elevato a qualsiasi potenza è uno.
Passaggio 11.2.1.4
Moltiplica per .
Passaggio 11.2.2
Trova il comune denominatore.
Tocca per altri passaggi...
Passaggio 11.2.2.1
Scrivi come una frazione con denominatore .
Passaggio 11.2.2.2
Moltiplica per .
Passaggio 11.2.2.3
Moltiplica per .
Passaggio 11.2.2.4
Scrivi come una frazione con denominatore .
Passaggio 11.2.2.5
Moltiplica per .
Passaggio 11.2.2.6
Moltiplica per .
Passaggio 11.2.2.7
Scrivi come una frazione con denominatore .
Passaggio 11.2.2.8
Moltiplica per .
Passaggio 11.2.2.9
Moltiplica per .
Passaggio 11.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 11.2.4
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 11.2.4.1
Moltiplica per .
Passaggio 11.2.4.2
Moltiplica per .
Passaggio 11.2.5
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 11.2.5.1
Somma e .
Passaggio 11.2.5.2
Sottrai da .
Passaggio 11.2.5.3
Sottrai da .
Passaggio 11.2.5.4
Sposta il negativo davanti alla frazione.
Passaggio 11.2.6
La risposta finale è .
Passaggio 12
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 13
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 13.1
Moltiplica per .
Passaggio 13.2
Somma e .
Passaggio 14
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 15
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 15.1
Sostituisci la variabile con nell'espressione.
Passaggio 15.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 15.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 15.2.1.1
Eleva alla potenza di .
Passaggio 15.2.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 15.2.1.2.1
Scomponi da .
Passaggio 15.2.1.2.2
Elimina il fattore comune.
Passaggio 15.2.1.2.3
Riscrivi l'espressione.
Passaggio 15.2.1.3
Eleva alla potenza di .
Passaggio 15.2.1.4
Moltiplica per .
Passaggio 15.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 15.2.2.1
Somma e .
Passaggio 15.2.2.2
Somma e .
Passaggio 15.2.2.3
Sottrai da .
Passaggio 15.2.3
La risposta finale è .
Passaggio 16
Questi sono gli estremi locali per .
è un minimo locale
è un massimo locale
Passaggio 17