Calcolo Esempi

Valutare il Limite limite per x tendente a 0 di (2x^3+5x^2-10x)/(x^2+2x)
Passaggio 1
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.3
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.2.4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.5
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.2.6
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.2.7
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 1.1.2.7.1
Calcola il limite di inserendo per .
Passaggio 1.1.2.7.2
Calcola il limite di inserendo per .
Passaggio 1.1.2.7.3
Calcola il limite di inserendo per .
Passaggio 1.1.2.8
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.1.2.8.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.2.8.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.1.2.8.1.2
Moltiplica per .
Passaggio 1.1.2.8.1.3
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.1.2.8.1.4
Moltiplica per .
Passaggio 1.1.2.8.1.5
Moltiplica per .
Passaggio 1.1.2.8.2
Somma e .
Passaggio 1.1.2.8.3
Somma e .
Passaggio 1.1.3
Calcola il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1.3.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.3.2
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.1.3.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.1.3.4
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 1.1.3.4.1
Calcola il limite di inserendo per .
Passaggio 1.1.3.4.2
Calcola il limite di inserendo per .
Passaggio 1.1.3.5
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.1.3.5.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.1.3.5.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 1.1.3.5.1.2
Moltiplica per .
Passaggio 1.1.3.5.2
Somma e .
Passaggio 1.1.3.5.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.3.6
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3.3
Moltiplica per .
Passaggio 1.3.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.4.3
Moltiplica per .
Passaggio 1.3.5
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.5.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.5.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.5.3
Moltiplica per .
Passaggio 1.3.6
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.7
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.8
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.8.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.8.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.8.3
Moltiplica per .
Passaggio 1.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 1.4.1
Scomponi da .
Passaggio 1.4.2
Scomponi da .
Passaggio 1.4.3
Scomponi da .
Passaggio 1.4.4
Scomponi da .
Passaggio 1.4.5
Scomponi da .
Passaggio 1.4.6
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 1.4.6.1
Scomponi da .
Passaggio 1.4.6.2
Scomponi da .
Passaggio 1.4.6.3
Scomponi da .
Passaggio 1.4.6.4
Elimina il fattore comune.
Passaggio 1.4.6.5
Riscrivi l'espressione.
Passaggio 2
Calcola il limite.
Tocca per altri passaggi...
Passaggio 2.1
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.2
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.4
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 2.5
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2.6
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.7
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.8
Calcola il limite di che è costante, mentre tende a .
Passaggio 3
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 3.1
Calcola il limite di inserendo per .
Passaggio 3.2
Calcola il limite di inserendo per .
Passaggio 3.3
Calcola il limite di inserendo per .
Passaggio 4
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 4.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 4.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 4.1.2
Moltiplica per .
Passaggio 4.1.3
Moltiplica per .
Passaggio 4.1.4
Moltiplica per .
Passaggio 4.1.5
Somma e .
Passaggio 4.1.6
Sottrai da .
Passaggio 4.2
Somma e .
Passaggio 4.3
Dividi per .