Calcolo Esempi

Trovare il Valore Massimo/Minimo f(x)=-5sin(1/3x)-15
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.1
e .
Passaggio 1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.3.2
La derivata di rispetto a è .
Passaggio 1.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.6
Moltiplica per .
Passaggio 1.2.7
e .
Passaggio 1.2.8
e .
Passaggio 1.2.9
Sposta il negativo davanti alla frazione.
Passaggio 1.3
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.2
Somma e .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2
La derivata di rispetto a è .
Passaggio 2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Differenzia.
Tocca per altri passaggi...
Passaggio 2.3.1
Moltiplica per .
Passaggio 2.3.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Moltiplica per .
Passaggio 2.3.2.2
e .
Passaggio 2.3.2.3
Sposta alla sinistra di .
Passaggio 2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 2.3.4.1
Moltiplica per .
Passaggio 2.3.4.2
Moltiplica per .
Passaggio 2.3.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.6
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Poni il numeratore uguale a zero.
Passaggio 5
Risolvi l'equazione per .
Tocca per altri passaggi...
Passaggio 5.1
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 5.1.1
Dividi per ciascun termine in .
Passaggio 5.1.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.1.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.1.2.1.1
Elimina il fattore comune.
Passaggio 5.1.2.1.2
Dividi per .
Passaggio 5.1.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.1.3.1
Dividi per .
Passaggio 5.2
Trova il valore dell'incognita corrispondente all'inverso del coseno presente nell'equazione assegnata.
Passaggio 5.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.3.1
Il valore esatto di è .
Passaggio 5.4
Moltiplica entrambi i lati dell'equazione per .
Passaggio 5.5
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 5.5.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.5.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.5.1.1.1
Elimina il fattore comune.
Passaggio 5.5.1.1.2
Riscrivi l'espressione.
Passaggio 5.5.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.5.2.1
e .
Passaggio 5.6
La funzione del coseno è positiva nel primo e nel quarto quadrante. Per trovare la seconda soluzione, sottrai l'angolo di riferimento da per trovare la soluzione nel quarto quadrante.
Passaggio 5.7
Risolvi per .
Tocca per altri passaggi...
Passaggio 5.7.1
Moltiplica entrambi i lati dell'equazione per .
Passaggio 5.7.2
Semplifica entrambi i lati dell'equazione.
Tocca per altri passaggi...
Passaggio 5.7.2.1
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 5.7.2.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.7.2.1.1.1
Elimina il fattore comune.
Passaggio 5.7.2.1.1.2
Riscrivi l'espressione.
Passaggio 5.7.2.2
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 5.7.2.2.1
Semplifica .
Tocca per altri passaggi...
Passaggio 5.7.2.2.1.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.7.2.2.1.2
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 5.7.2.2.1.2.1
e .
Passaggio 5.7.2.2.1.2.2
Riduci i numeratori su un comune denominatore.
Passaggio 5.7.2.2.1.3
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.7.2.2.1.3.1
Moltiplica per .
Passaggio 5.7.2.2.1.3.2
Sottrai da .
Passaggio 5.7.2.2.1.4
Moltiplica .
Tocca per altri passaggi...
Passaggio 5.7.2.2.1.4.1
e .
Passaggio 5.7.2.2.1.4.2
Moltiplica per .
Passaggio 5.8
La soluzione dell'equazione .
Passaggio 6
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 7
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 7.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 7.1.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 7.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 7.1.2.1
Scomponi da .
Passaggio 7.1.2.2
Elimina il fattore comune.
Passaggio 7.1.2.3
Riscrivi l'espressione.
Passaggio 7.1.3
Il valore esatto di è .
Passaggio 7.2
Moltiplica per .
Passaggio 8
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 9
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 9.1
Sostituisci la variabile con nell'espressione.
Passaggio 9.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 9.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 9.2.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 9.2.1.1.1
Scomponi da .
Passaggio 9.2.1.1.2
Elimina il fattore comune.
Passaggio 9.2.1.1.3
Riscrivi l'espressione.
Passaggio 9.2.1.2
Il valore esatto di è .
Passaggio 9.2.1.3
Moltiplica per .
Passaggio 9.2.2
Sottrai da .
Passaggio 9.2.3
La risposta finale è .
Passaggio 10
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 11
Calcola la derivata seconda.
Tocca per altri passaggi...
Passaggio 11.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 11.1.1
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 11.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 11.1.2.1
Scomponi da .
Passaggio 11.1.2.2
Elimina il fattore comune.
Passaggio 11.1.2.3
Riscrivi l'espressione.
Passaggio 11.1.3
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il seno è negativo nel quarto quadrante.
Passaggio 11.1.4
Il valore esatto di è .
Passaggio 11.1.5
Moltiplica per .
Passaggio 11.2
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 11.2.1
Moltiplica per .
Passaggio 11.2.2
Sposta il negativo davanti alla frazione.
Passaggio 12
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 13
Trova il valore di y quando .
Tocca per altri passaggi...
Passaggio 13.1
Sostituisci la variabile con nell'espressione.
Passaggio 13.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 13.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 13.2.1.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 13.2.1.1.1
Scomponi da .
Passaggio 13.2.1.1.2
Elimina il fattore comune.
Passaggio 13.2.1.1.3
Riscrivi l'espressione.
Passaggio 13.2.1.2
Applica l'angolo di riferimento trovando l'angolo con valori trigonometrici equivalenti nel primo quadrante. Rendi negativa l'espressione, perché il seno è negativo nel quarto quadrante.
Passaggio 13.2.1.3
Il valore esatto di è .
Passaggio 13.2.1.4
Moltiplica .
Tocca per altri passaggi...
Passaggio 13.2.1.4.1
Moltiplica per .
Passaggio 13.2.1.4.2
Moltiplica per .
Passaggio 13.2.2
Sottrai da .
Passaggio 13.2.3
La risposta finale è .
Passaggio 14
Questi sono gli estremi locali per .
è un minimo locale
è un massimo locale
Passaggio 15