Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.3
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.4
Differenzia.
Passaggio 1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4.3
Semplifica l'espressione.
Passaggio 1.4.3.1
Moltiplica per .
Passaggio 1.4.3.2
Sposta alla sinistra di .
Passaggio 1.4.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4.5
Moltiplica per .
Passaggio 1.5
Semplifica.
Passaggio 1.5.1
Applica la proprietà distributiva.
Passaggio 1.5.2
Moltiplica per .
Passaggio 1.5.3
Riordina i termini.
Passaggio 1.5.4
Riordina i fattori in .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Calcola .
Passaggio 2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 2.2.3
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.2.3.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.3.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.2.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.2.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.7
Moltiplica per .
Passaggio 2.2.8
Sposta alla sinistra di .
Passaggio 2.2.9
Moltiplica per .
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.3.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
Sposta alla sinistra di .
Passaggio 2.3.7
Moltiplica per .
Passaggio 2.4
Semplifica.
Passaggio 2.4.1
Applica la proprietà distributiva.
Passaggio 2.4.2
Raccogli i termini.
Passaggio 2.4.2.1
Moltiplica per .
Passaggio 2.4.2.2
Sottrai da .
Passaggio 2.4.3
Riordina i termini.
Passaggio 2.4.4
Riordina i fattori in .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.2
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 4.1.3
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 4.1.3.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.3.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.1.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.4
Differenzia.
Passaggio 4.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.4.3
Semplifica l'espressione.
Passaggio 4.1.4.3.1
Moltiplica per .
Passaggio 4.1.4.3.2
Sposta alla sinistra di .
Passaggio 4.1.4.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.4.5
Moltiplica per .
Passaggio 4.1.5
Semplifica.
Passaggio 4.1.5.1
Applica la proprietà distributiva.
Passaggio 4.1.5.2
Moltiplica per .
Passaggio 4.1.5.3
Riordina i termini.
Passaggio 4.1.5.4
Riordina i fattori in .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Scomponi da .
Passaggio 5.2.1
Scomponi da .
Passaggio 5.2.2
Scomponi da .
Passaggio 5.2.3
Scomponi da .
Passaggio 5.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 5.4
Imposta uguale a e risolvi per .
Passaggio 5.4.1
Imposta uguale a .
Passaggio 5.4.2
Risolvi per .
Passaggio 5.4.2.1
Trova il logaritmo naturale dell'equazione assegnata per rimuovere la variabile dall'esponente.
Passaggio 5.4.2.2
Non è possibile risolvere l'equazione perché è indefinita.
Indefinito
Passaggio 5.4.2.3
Non c'è soluzione per
Nessuna soluzione
Nessuna soluzione
Nessuna soluzione
Passaggio 5.5
Imposta uguale a e risolvi per .
Passaggio 5.5.1
Imposta uguale a .
Passaggio 5.5.2
Risolvi per .
Passaggio 5.5.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 5.5.2.2
Dividi per ciascun termine in e semplifica.
Passaggio 5.5.2.2.1
Dividi per ciascun termine in .
Passaggio 5.5.2.2.2
Semplifica il lato sinistro.
Passaggio 5.5.2.2.2.1
Elimina il fattore comune di .
Passaggio 5.5.2.2.2.1.1
Elimina il fattore comune.
Passaggio 5.5.2.2.2.1.2
Dividi per .
Passaggio 5.5.2.2.3
Semplifica il lato destro.
Passaggio 5.5.2.2.3.1
Dividendo due valori negativi si ottiene un valore positivo.
Passaggio 5.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Semplifica ciascun termine.
Passaggio 9.1.1
Elimina il fattore comune di .
Passaggio 9.1.1.1
Scomponi da .
Passaggio 9.1.1.2
Elimina il fattore comune.
Passaggio 9.1.1.3
Riscrivi l'espressione.
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Elimina il fattore comune di .
Passaggio 9.1.3.1
Scomponi da .
Passaggio 9.1.3.2
Scomponi da .
Passaggio 9.1.3.3
Elimina il fattore comune.
Passaggio 9.1.3.4
Riscrivi l'espressione.
Passaggio 9.1.4
Elimina il fattore comune di .
Passaggio 9.1.4.1
Elimina il fattore comune.
Passaggio 9.1.4.2
Riscrivi l'espressione.
Passaggio 9.1.5
Moltiplica per .
Passaggio 9.1.6
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 9.1.7
e .
Passaggio 9.1.8
Sostituisci con un'approssimazione.
Passaggio 9.1.9
Dividi per .
Passaggio 9.1.10
Elimina il fattore comune di .
Passaggio 9.1.10.1
Scomponi da .
Passaggio 9.1.10.2
Scomponi da .
Passaggio 9.1.10.3
Elimina il fattore comune.
Passaggio 9.1.10.4
Riscrivi l'espressione.
Passaggio 9.1.11
Elimina il fattore comune di .
Passaggio 9.1.11.1
Elimina il fattore comune.
Passaggio 9.1.11.2
Riscrivi l'espressione.
Passaggio 9.1.12
Moltiplica per .
Passaggio 9.1.13
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 9.1.14
e .
Passaggio 9.1.15
Sposta il negativo davanti alla frazione.
Passaggio 9.1.16
Sostituisci con un'approssimazione.
Passaggio 9.1.17
Dividi per .
Passaggio 9.1.18
Moltiplica per .
Passaggio 9.2
Sottrai da .
Passaggio 10
è un massimo locale perché il valore della derivata seconda è negativo. Ciò si definisce test della derivata seconda.
è un massimo locale
Passaggio 11
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Passaggio 11.2.1
Elimina il fattore comune di .
Passaggio 11.2.1.1
Scomponi da .
Passaggio 11.2.1.2
Elimina il fattore comune.
Passaggio 11.2.1.3
Riscrivi l'espressione.
Passaggio 11.2.2
Moltiplica per .
Passaggio 11.2.3
Elimina il fattore comune di .
Passaggio 11.2.3.1
Scomponi da .
Passaggio 11.2.3.2
Scomponi da .
Passaggio 11.2.3.3
Elimina il fattore comune.
Passaggio 11.2.3.4
Riscrivi l'espressione.
Passaggio 11.2.4
Elimina il fattore comune di .
Passaggio 11.2.4.1
Elimina il fattore comune.
Passaggio 11.2.4.2
Riscrivi l'espressione.
Passaggio 11.2.5
Moltiplica per .
Passaggio 11.2.6
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 11.2.7
e .
Passaggio 11.2.8
La risposta finale è .
Passaggio 12
Questi sono gli estremi locali per .
è un massimo locale
Passaggio 13