Calcolo Esempi

Valutare Utilizzando la Regola di L''Hospital limite per x tendente a 1 di (5-5x^2)/(4tan(3x-3))
Passaggio 1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.2.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.2.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.2.1.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.2.1.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.2.1.4
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 1.2.2
Calcola il limite di inserendo per .
Passaggio 1.2.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.2.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.2.3.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 1.2.3.1.2
Moltiplica per .
Passaggio 1.2.3.2
Sottrai da .
Passaggio 1.3
Calcola il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.3.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.3.1.1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.3.1.2
Sposta il limite all'interno della funzione trigonometrica, poiché la tangente è continua.
Passaggio 1.3.1.3
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.3.1.4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.3.1.5
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.3.2
Calcola il limite di inserendo per .
Passaggio 1.3.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.3.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.3.3.1.1
Moltiplica per .
Passaggio 1.3.3.1.2
Moltiplica per .
Passaggio 1.3.3.2
Sottrai da .
Passaggio 1.3.3.3
Il valore esatto di è .
Passaggio 1.3.3.4
Moltiplica per .
Passaggio 1.3.3.5
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4
Calcola .
Tocca per altri passaggi...
Passaggio 3.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4.3
Moltiplica per .
Passaggio 3.5
Sottrai da .
Passaggio 3.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.7
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 3.7.1
Per applicare la regola della catena, imposta come .
Passaggio 3.7.2
La derivata di rispetto a è .
Passaggio 3.7.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.8
Rimuovi le parentesi.
Passaggio 3.9
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.10
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.11
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.12
Moltiplica per .
Passaggio 3.13
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.14
Somma e .
Passaggio 3.15
Moltiplica per .
Passaggio 4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 4.1
Scomponi da .
Passaggio 4.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 4.2.1
Scomponi da .
Passaggio 4.2.2
Elimina il fattore comune.
Passaggio 4.2.3
Riscrivi l'espressione.
Passaggio 5
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 6
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 7
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 8
Sposta il limite all'interno della funzione trigonometrica, poiché la secante è continua.
Passaggio 9
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 10
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 11
Calcola il limite di che è costante, mentre tende a .
Passaggio 12
Calcola il limite inserendo per tutte le occorrenze di .
Tocca per altri passaggi...
Passaggio 12.1
Calcola il limite di inserendo per .
Passaggio 12.2
Calcola il limite di inserendo per .
Passaggio 13
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 13.1
Combina.
Passaggio 13.2
Moltiplica per .
Passaggio 13.3
Semplifica il denominatore.
Tocca per altri passaggi...
Passaggio 13.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 13.3.1.1
Moltiplica per .
Passaggio 13.3.1.2
Moltiplica per .
Passaggio 13.3.2
Sottrai da .
Passaggio 13.3.3
Il valore esatto di è .
Passaggio 13.3.4
Uno elevato a qualsiasi potenza è uno.
Passaggio 13.4
Moltiplica per .
Passaggio 13.5
Sposta il negativo davanti alla frazione.