Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
+ | + | + | - |
Passaggio 1.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+ | + | + | - |
Passaggio 1.3
Moltiplica il nuovo quoziente per il divisore.
+ | + | + | - | ||||||||
+ | + |
Passaggio 1.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+ | + | + | - | ||||||||
- | - |
Passaggio 1.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+ | + | + | - | ||||||||
- | - | ||||||||||
- |
Passaggio 1.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + |
Passaggio 1.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + |
Passaggio 1.8
Moltiplica il nuovo quoziente per il divisore.
- | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + | ||||||||||
- | - |
Passaggio 1.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + |
Passaggio 1.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ |
Passaggio 1.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Passaggio 1.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | + | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Passaggio 1.13
Moltiplica il nuovo quoziente per il divisore.
- | + | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - | ||||||||||
+ | + |
Passaggio 1.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | + | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - | ||||||||||
- | - |
Passaggio 1.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | + | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - | ||||||||||
- | - | ||||||||||
- |
Passaggio 1.16
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 6
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 7
Applica la regola costante.
Passaggio 8
Passaggio 8.1
e .
Passaggio 8.2
e .
Passaggio 9
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 10
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 11
Moltiplica per .
Passaggio 12
Passaggio 12.1
Sia . Trova .
Passaggio 12.1.1
Differenzia .
Passaggio 12.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 12.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 12.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 12.1.5
Somma e .
Passaggio 12.2
Riscrivi il problema usando e .
Passaggio 13
L'integrale di rispetto a è .
Passaggio 14
Semplifica.
Passaggio 15
Sostituisci tutte le occorrenze di con .
Passaggio 16
Riordina i termini.