Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Usa per riscrivere come .
Passaggio 1.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.4
e .
Passaggio 1.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.6
Semplifica il numeratore.
Passaggio 1.6.1
Moltiplica per .
Passaggio 1.6.2
Sottrai da .
Passaggio 1.7
Riduci le frazioni.
Passaggio 1.7.1
Sposta il negativo davanti alla frazione.
Passaggio 1.7.2
e .
Passaggio 1.7.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.10
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.11
Moltiplica per .
Passaggio 1.12
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.13
Riduci le frazioni.
Passaggio 1.13.1
Somma e .
Passaggio 1.13.2
e .
Passaggio 2
Passaggio 2.1
Differenzia usando la regola multipla costante.
Passaggio 2.1.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.2
Applica le regole di base degli esponenti.
Passaggio 2.1.2.1
Riscrivi come .
Passaggio 2.1.2.2
Moltiplica gli esponenti in .
Passaggio 2.1.2.2.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 2.1.2.2.2
e .
Passaggio 2.1.2.2.3
Sposta il negativo davanti alla frazione.
Passaggio 2.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 2.4
e .
Passaggio 2.5
Riduci i numeratori su un comune denominatore.
Passaggio 2.6
Semplifica il numeratore.
Passaggio 2.6.1
Moltiplica per .
Passaggio 2.6.2
Sottrai da .
Passaggio 2.7
Riduci le frazioni.
Passaggio 2.7.1
Sposta il negativo davanti alla frazione.
Passaggio 2.7.2
e .
Passaggio 2.7.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 2.7.4
Moltiplica per .
Passaggio 2.7.5
Moltiplica per .
Passaggio 2.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.10
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.11
Moltiplica per .
Passaggio 2.12
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.13
Riduci le frazioni.
Passaggio 2.13.1
Somma e .
Passaggio 2.13.2
Moltiplica per .
Passaggio 2.13.3
e .
Passaggio 2.13.4
Semplifica l'espressione.
Passaggio 2.13.4.1
Moltiplica per .
Passaggio 2.13.4.2
Sposta il negativo davanti alla frazione.
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Usa per riscrivere come .
Passaggio 4.1.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 4.1.2.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 4.1.4
e .
Passaggio 4.1.5
Riduci i numeratori su un comune denominatore.
Passaggio 4.1.6
Semplifica il numeratore.
Passaggio 4.1.6.1
Moltiplica per .
Passaggio 4.1.6.2
Sottrai da .
Passaggio 4.1.7
Riduci le frazioni.
Passaggio 4.1.7.1
Sposta il negativo davanti alla frazione.
Passaggio 4.1.7.2
e .
Passaggio 4.1.7.3
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 4.1.8
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.10
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.11
Moltiplica per .
Passaggio 4.1.12
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.13
Riduci le frazioni.
Passaggio 4.1.13.1
Somma e .
Passaggio 4.1.13.2
e .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Poni il numeratore uguale a zero.
Passaggio 5.3
Poiché , non ci sono soluzioni.
Nessuna soluzione
Nessuna soluzione
Passaggio 6
Passaggio 6.1
Converti le espressioni con gli esponenti frazionari in radicali.
Passaggio 6.1.1
Applica la regola per riscrivere l'elevazione a potenza come un radicale.
Passaggio 6.1.2
Qualsiasi cosa elevata a è la base stessa.
Passaggio 6.2
Imposta il denominatore in in modo che sia uguale a per individuare dove l'espressione è indefinita.
Passaggio 6.3
Risolvi per .
Passaggio 6.3.1
Per rimuovere il radicale sul lato sinistro dell'equazione, eleva al quadrato entrambi i lati dell'equazione.
Passaggio 6.3.2
Semplifica ogni lato dell'equazione.
Passaggio 6.3.2.1
Usa per riscrivere come .
Passaggio 6.3.2.2
Semplifica il lato sinistro.
Passaggio 6.3.2.2.1
Semplifica .
Passaggio 6.3.2.2.1.1
Applica la regola del prodotto a .
Passaggio 6.3.2.2.1.2
Eleva alla potenza di .
Passaggio 6.3.2.2.1.3
Moltiplica gli esponenti in .
Passaggio 6.3.2.2.1.3.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 6.3.2.2.1.3.2
Elimina il fattore comune di .
Passaggio 6.3.2.2.1.3.2.1
Elimina il fattore comune.
Passaggio 6.3.2.2.1.3.2.2
Riscrivi l'espressione.
Passaggio 6.3.2.2.1.4
Semplifica.
Passaggio 6.3.2.2.1.5
Applica la proprietà distributiva.
Passaggio 6.3.2.2.1.6
Moltiplica.
Passaggio 6.3.2.2.1.6.1
Moltiplica per .
Passaggio 6.3.2.2.1.6.2
Moltiplica per .
Passaggio 6.3.2.3
Semplifica il lato destro.
Passaggio 6.3.2.3.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 6.3.3
Risolvi per .
Passaggio 6.3.3.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 6.3.3.2
Dividi per ciascun termine in e semplifica.
Passaggio 6.3.3.2.1
Dividi per ciascun termine in .
Passaggio 6.3.3.2.2
Semplifica il lato sinistro.
Passaggio 6.3.3.2.2.1
Elimina il fattore comune di .
Passaggio 6.3.3.2.2.1.1
Elimina il fattore comune.
Passaggio 6.3.3.2.2.1.2
Dividi per .
Passaggio 6.3.3.2.3
Semplifica il lato destro.
Passaggio 6.3.3.2.3.1
Elimina il fattore comune di e .
Passaggio 6.3.3.2.3.1.1
Scomponi da .
Passaggio 6.3.3.2.3.1.2
Elimina i fattori comuni.
Passaggio 6.3.3.2.3.1.2.1
Scomponi da .
Passaggio 6.3.3.2.3.1.2.2
Elimina il fattore comune.
Passaggio 6.3.3.2.3.1.2.3
Riscrivi l'espressione.
Passaggio 6.3.3.2.3.2
Sposta il negativo davanti alla frazione.
Passaggio 6.4
Imposta il radicando in in modo che minore di per individuare dove l'espressione è indefinita.
Passaggio 6.5
Risolvi per .
Passaggio 6.5.1
Sottrai da entrambi i lati della diseguaglianza.
Passaggio 6.5.2
Dividi per ciascun termine in e semplifica.
Passaggio 6.5.2.1
Dividi per ciascun termine in .
Passaggio 6.5.2.2
Semplifica il lato sinistro.
Passaggio 6.5.2.2.1
Elimina il fattore comune di .
Passaggio 6.5.2.2.1.1
Elimina il fattore comune.
Passaggio 6.5.2.2.1.2
Dividi per .
Passaggio 6.5.2.3
Semplifica il lato destro.
Passaggio 6.5.2.3.1
Sposta il negativo davanti alla frazione.
Passaggio 6.6
L'equazione è indefinita dove il denominatore è uguale a , l'argomento di una radice quadrata è minore di o l'argomento di un logaritmo è minore di o uguale a .
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Elimina il fattore comune di .
Passaggio 9.1.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 9.1.2
Elimina il fattore comune.
Passaggio 9.1.3
Riscrivi l'espressione.
Passaggio 9.2
Semplifica l'espressione.
Passaggio 9.2.1
Somma e .
Passaggio 9.2.2
Riscrivi come .
Passaggio 9.2.3
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 9.3
Elimina il fattore comune di .
Passaggio 9.3.1
Elimina il fattore comune.
Passaggio 9.3.2
Riscrivi l'espressione.
Passaggio 9.4
Semplifica l'espressione.
Passaggio 9.4.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 9.4.2
Moltiplica per .
Passaggio 9.4.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 9.5
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Indefinito
Passaggio 10
Poiché il test della derivata prima è fallito, non ci sono estremi locali.
Nessun estremo locale
Passaggio 11