Calcolo Esempi

Trovare l''Area Tra le Curve y=x^2-5 and y=4
e
Passaggio 1
Risolvi tramite sostituzione per trovare l'intersezione tra le curve.
Tocca per altri passaggi...
Passaggio 1.1
Elimina i lati uguali di ciascuna equazione e combinale.
Passaggio 1.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.2.1
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Tocca per altri passaggi...
Passaggio 1.2.1.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.2.1.2
Somma e .
Passaggio 1.2.2
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 1.2.3
Semplifica .
Tocca per altri passaggi...
Passaggio 1.2.3.1
Riscrivi come .
Passaggio 1.2.3.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 1.2.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 1.2.4.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 1.2.4.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 1.2.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 1.3
Sostituisci a .
Passaggio 1.4
La soluzione del sistema è l'insieme completo di coppie ordinate che sono soluzioni valide.
Passaggio 2
L'area della regione tra le curve è definita come l'integrale della curva superiore meno l'integrale della curva inferiore rispetto a ciascuna regione. Le regioni sono determinate dai punti di intersezione delle curve. Questa operazione si può svolgere algebricamente o graficamente.
Passaggio 3
Integra per trovare l'area tra e .
Tocca per altri passaggi...
Passaggio 3.1
Combina gli interi in un singolo intero.
Passaggio 3.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.2.1
Applica la proprietà distributiva.
Passaggio 3.2.2
Moltiplica per .
Passaggio 3.3
Somma e .
Passaggio 3.4
Dividi il singolo integrale in più integrali.
Passaggio 3.5
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 3.6
Secondo la regola della potenza, l'intero di rispetto a è .
Passaggio 3.7
e .
Passaggio 3.8
Applica la regola costante.
Passaggio 3.9
Sostituisci e semplifica.
Tocca per altri passaggi...
Passaggio 3.9.1
Calcola per e per .
Passaggio 3.9.2
Calcola per e per .
Passaggio 3.9.3
Semplifica.
Tocca per altri passaggi...
Passaggio 3.9.3.1
Eleva alla potenza di .
Passaggio 3.9.3.2
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 3.9.3.2.1
Scomponi da .
Passaggio 3.9.3.2.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 3.9.3.2.2.1
Scomponi da .
Passaggio 3.9.3.2.2.2
Elimina il fattore comune.
Passaggio 3.9.3.2.2.3
Riscrivi l'espressione.
Passaggio 3.9.3.2.2.4
Dividi per .
Passaggio 3.9.3.3
Eleva alla potenza di .
Passaggio 3.9.3.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 3.9.3.4.1
Scomponi da .
Passaggio 3.9.3.4.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 3.9.3.4.2.1
Scomponi da .
Passaggio 3.9.3.4.2.2
Elimina il fattore comune.
Passaggio 3.9.3.4.2.3
Riscrivi l'espressione.
Passaggio 3.9.3.4.2.4
Dividi per .
Passaggio 3.9.3.5
Moltiplica per .
Passaggio 3.9.3.6
Somma e .
Passaggio 3.9.3.7
Moltiplica per .
Passaggio 3.9.3.8
Moltiplica per .
Passaggio 3.9.3.9
Moltiplica per .
Passaggio 3.9.3.10
Somma e .
Passaggio 3.9.3.11
Somma e .
Passaggio 4