Calcolo Esempi

Valutare il Limite limite per h tendente a 0 di (arctan(x+h)-arctan(x))/h
Passaggio 1
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 1.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.1.2.2
Somma e .
Passaggio 1.1.2.3
Sostituisci a e lascia che tenda a , poiché .
Passaggio 1.1.2.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.1.2.5
Somma e .
Passaggio 1.1.2.6
Sottrai da .
Passaggio 1.1.3
Calcola il limite di inserendo per .
Passaggio 1.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 1.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 1.3.1
Differenzia numeratore e denominatore.
Passaggio 1.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.3.3.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.3.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.3.1.2
La derivata di rispetto a è .
Passaggio 1.3.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.3.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.3.5
Somma e .
Passaggio 1.3.3.6
Moltiplica per .
Passaggio 1.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.5
Semplifica.
Tocca per altri passaggi...
Passaggio 1.3.5.1
Somma e .
Passaggio 1.3.5.2
Riordina i termini.
Passaggio 1.3.6
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 1.5
Moltiplica per .
Passaggio 2
Calcola il limite.
Tocca per altri passaggi...
Passaggio 2.1
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 2.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.3
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.4
Sposta l'esponente da fuori dal limite usando la regola della potenza dei limiti.
Passaggio 2.5
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 2.6
Calcola il limite di che è costante, mentre tende a .
Passaggio 2.7
Calcola il limite di che è costante, mentre tende a .
Passaggio 3
Calcola il limite di inserendo per .
Passaggio 4
Somma e .