Inserisci un problema...
Calcolo Esempi
Passaggio 1
Scrivi come funzione.
Passaggio 2
È possibile trovare la funzione determinando l'integrale indefinito della derivata .
Passaggio 3
Imposta l'integrale per risolvere.
Passaggio 4
Passaggio 4.1
Nega l'esponente di e rimuovilo dal denominatore.
Passaggio 4.2
Semplifica.
Passaggio 4.2.1
Moltiplica gli esponenti in .
Passaggio 4.2.1.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 4.2.1.2
Applica la proprietà distributiva.
Passaggio 4.2.1.3
Moltiplica per .
Passaggio 4.2.1.4
Moltiplica per .
Passaggio 4.2.2
Moltiplica per .
Passaggio 5
Passaggio 5.1
Sia . Trova .
Passaggio 5.1.1
Differenzia .
Passaggio 5.1.2
Differenzia.
Passaggio 5.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.1.2.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.3
Calcola .
Passaggio 5.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.3.3
Moltiplica per .
Passaggio 5.1.4
Somma e .
Passaggio 5.2
Riscrivi il problema usando e .
Passaggio 6
e .
Passaggio 7
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 8
L'integrale di rispetto a è .
Passaggio 9
Semplifica.
Passaggio 10
Sostituisci tutte le occorrenze di con .
Passaggio 11
La risposta è l'antiderivata della funzione .