Calcolo Esempi

Trovare i Punti di Flesso f(x)=x^(1/3)(x^2-2x+1)
Passaggio 1
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia usando la regola del prodotto secondo cui è dove e .
Passaggio 1.1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.5
Moltiplica per .
Passaggio 1.1.2.6
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.7
Somma e .
Passaggio 1.1.2.8
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.4
e .
Passaggio 1.1.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.1.6.1
Moltiplica per .
Passaggio 1.1.6.2
Sottrai da .
Passaggio 1.1.7
Sposta il negativo davanti alla frazione.
Passaggio 1.1.8
e .
Passaggio 1.1.9
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.1.10
Semplifica.
Tocca per altri passaggi...
Passaggio 1.1.10.1
Applica la proprietà distributiva.
Passaggio 1.1.10.2
Applica la proprietà distributiva.
Passaggio 1.1.10.3
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 1.1.10.3.1
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.1.10.3.1.1
Sposta .
Passaggio 1.1.10.3.1.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 1.1.10.3.1.2.1
Eleva alla potenza di .
Passaggio 1.1.10.3.1.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.1.10.3.1.3
Scrivi come una frazione con un comune denominatore.
Passaggio 1.1.10.3.1.4
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.10.3.1.5
Somma e .
Passaggio 1.1.10.3.2
Sposta alla sinistra di .
Passaggio 1.1.10.3.3
Sposta alla sinistra di .
Passaggio 1.1.10.3.4
e .
Passaggio 1.1.10.3.5
Sposta al numeratore usando la regola dell'esponente negativo .
Passaggio 1.1.10.3.6
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.1.10.3.6.1
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.1.10.3.6.2
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.10.3.6.3
e .
Passaggio 1.1.10.3.6.4
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.10.3.6.5
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.1.10.3.6.5.1
Moltiplica per .
Passaggio 1.1.10.3.6.5.2
Sottrai da .
Passaggio 1.1.10.3.7
e .
Passaggio 1.1.10.3.8
e .
Passaggio 1.1.10.3.9
Sposta alla sinistra di .
Passaggio 1.1.10.3.10
Sposta al numeratore usando la regola dell'esponente negativo .
Passaggio 1.1.10.3.11
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.1.10.3.11.1
Sposta .
Passaggio 1.1.10.3.11.2
Moltiplica per .
Tocca per altri passaggi...
Passaggio 1.1.10.3.11.2.1
Eleva alla potenza di .
Passaggio 1.1.10.3.11.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.1.10.3.11.3
Scrivi come una frazione con un comune denominatore.
Passaggio 1.1.10.3.11.4
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.10.3.11.5
Somma e .
Passaggio 1.1.10.3.12
Sposta il negativo davanti alla frazione.
Passaggio 1.1.10.3.13
Moltiplica per .
Passaggio 1.1.10.3.14
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.10.3.15
e .
Passaggio 1.1.10.3.16
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.10.3.17
Moltiplica per .
Passaggio 1.1.10.3.18
Somma e .
Passaggio 1.1.10.3.19
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.1.10.3.20
e .
Passaggio 1.1.10.3.21
Riduci i numeratori su un comune denominatore.
Passaggio 1.1.10.3.22
Moltiplica per .
Passaggio 1.1.10.3.23
Sottrai da .
Passaggio 1.1.10.3.24
Sposta il negativo davanti alla frazione.
Passaggio 1.1.10.4
Riordina i termini.
Passaggio 1.2
Trova la derivata seconda.
Tocca per altri passaggi...
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.2.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.2.2.4
e .
Passaggio 1.2.2.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.2.2.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.2.2.6.1
Moltiplica per .
Passaggio 1.2.2.6.2
Sottrai da .
Passaggio 1.2.2.7
e .
Passaggio 1.2.2.8
Moltiplica per .
Passaggio 1.2.2.9
Moltiplica per .
Passaggio 1.2.2.10
Moltiplica per .
Passaggio 1.2.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3.2
Riscrivi come .
Passaggio 1.2.3.3
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.2.3.3.1
Per applicare la regola della catena, imposta come .
Passaggio 1.2.3.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3.5
Moltiplica gli esponenti in .
Tocca per altri passaggi...
Passaggio 1.2.3.5.1
Applica la regola della potenza e moltiplica gli esponenti, .
Passaggio 1.2.3.5.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.2.3.5.2.1
e .
Passaggio 1.2.3.5.2.2
Moltiplica per .
Passaggio 1.2.3.5.3
Sposta il negativo davanti alla frazione.
Passaggio 1.2.3.6
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.2.3.7
e .
Passaggio 1.2.3.8
Riduci i numeratori su un comune denominatore.
Passaggio 1.2.3.9
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.2.3.9.1
Moltiplica per .
Passaggio 1.2.3.9.2
Sottrai da .
Passaggio 1.2.3.10
Sposta il negativo davanti alla frazione.
Passaggio 1.2.3.11
e .
Passaggio 1.2.3.12
e .
Passaggio 1.2.3.13
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.2.3.13.1
Sposta .
Passaggio 1.2.3.13.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 1.2.3.13.3
Riduci i numeratori su un comune denominatore.
Passaggio 1.2.3.13.4
Sottrai da .
Passaggio 1.2.3.13.5
Sposta il negativo davanti alla frazione.
Passaggio 1.2.3.14
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.2.3.15
Moltiplica per .
Passaggio 1.2.3.16
Moltiplica per .
Passaggio 1.2.4
Calcola .
Tocca per altri passaggi...
Passaggio 1.2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.4.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 1.2.4.4
e .
Passaggio 1.2.4.5
Riduci i numeratori su un comune denominatore.
Passaggio 1.2.4.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 1.2.4.6.1
Moltiplica per .
Passaggio 1.2.4.6.2
Sottrai da .
Passaggio 1.2.4.7
Sposta il negativo davanti alla frazione.
Passaggio 1.2.4.8
e .
Passaggio 1.2.4.9
Moltiplica per .
Passaggio 1.2.4.10
Moltiplica per .
Passaggio 1.2.4.11
Sposta alla sinistra di .
Passaggio 1.2.4.12
Sposta al denominatore usando la regola dell'esponente negativo .
Passaggio 1.3
La derivata seconda di rispetto a è .
Passaggio 2
Imposta la derivata seconda pari a , quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2
Trova il minimo comune denominatore dei termini nell'equazione.
Tocca per altri passaggi...
Passaggio 2.2.1
Trovare il minimo comune denominatore di una lista di valori è uguale a trovare il minimo comune multiplo dei denominatori di quei valori.
Passaggio 2.2.2
Poiché contiene sia numeri che variabili, ci sono due passaggi per trovare il minimo comune multiplo. Trova il minimo comune multiplo per la parte numerica , quindi trova il minimo comune multiplo per la parte variabile .
Passaggio 2.2.3
Il minimo comune multiplo è il numero positivo più piccolo divisibile equamente per tutti i numeri.
1. Elenca i fattori primi di ciascun numero.
2. Moltiplica ciascun fattore, preso una sola volta, con l'esponente più grande.
Passaggio 2.2.4
presenta fattori di e .
Passaggio 2.2.5
Il numero non è un numero primo perché ha un solo divisore positivo, cioè se stesso.
Non è primo
Passaggio 2.2.6
Il minimo comune multiplo di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.2.7
Moltiplica per .
Passaggio 2.2.8
Il minimo comune multiplo (mcm) di si ottiene moltiplicando tutti i fattori primi, comuni o non comuni, ciascuno preso una sola volta con l'esponente più grande.
Passaggio 2.2.9
Il minimo comune multiplo di è la parte numerica moltiplicata per la parte variabile.
Passaggio 2.3
Moltiplica per ciascun termine in per eliminare le frazioni.
Tocca per altri passaggi...
Passaggio 2.3.1
Moltiplica ogni termine in per .
Passaggio 2.3.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.3.2.1.1
Riscrivi usando la proprietà commutativa della moltiplicazione.
Passaggio 2.3.2.1.2
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.2.1.2.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2.2
Riscrivi l'espressione.
Passaggio 2.3.2.1.3
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 2.3.2.1.3.1
Sposta .
Passaggio 2.3.2.1.3.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.3.2.1.3.3
Riduci i numeratori su un comune denominatore.
Passaggio 2.3.2.1.3.4
Somma e .
Passaggio 2.3.2.1.3.5
Dividi per .
Passaggio 2.3.2.1.4
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.2.1.4.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 2.3.2.1.4.2
Elimina il fattore comune.
Passaggio 2.3.2.1.4.3
Riscrivi l'espressione.
Passaggio 2.3.2.1.5
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.3.2.1.5.1
Sposta il negativo all'inizio di nel numeratore.
Passaggio 2.3.2.1.5.2
Scomponi da .
Passaggio 2.3.2.1.5.3
Scomponi da .
Passaggio 2.3.2.1.5.4
Elimina il fattore comune.
Passaggio 2.3.2.1.5.5
Riscrivi l'espressione.
Passaggio 2.3.2.1.6
Dividi per .
Passaggio 2.3.2.1.7
Semplifica.
Passaggio 2.3.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.3.3.1
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.3.3.1.1
Moltiplica per .
Passaggio 2.3.3.1.2
Moltiplica per .
Passaggio 2.4
Risolvi l'equazione.
Tocca per altri passaggi...
Passaggio 2.4.1
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 2.4.1.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.4.1.1.1
Scomponi da .
Passaggio 2.4.1.1.2
Scomponi da .
Passaggio 2.4.1.1.3
Scomponi da .
Passaggio 2.4.1.1.4
Scomponi da .
Passaggio 2.4.1.1.5
Scomponi da .
Passaggio 2.4.1.2
Riordina i termini.
Passaggio 2.4.2
Dividi per ciascun termine in e semplifica.
Tocca per altri passaggi...
Passaggio 2.4.2.1
Dividi per ciascun termine in .
Passaggio 2.4.2.2
Semplifica il lato sinistro.
Tocca per altri passaggi...
Passaggio 2.4.2.2.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 2.4.2.2.1.1
Elimina il fattore comune.
Passaggio 2.4.2.2.1.2
Dividi per .
Passaggio 2.4.2.3
Semplifica il lato destro.
Tocca per altri passaggi...
Passaggio 2.4.2.3.1
Dividi per .
Passaggio 2.4.3
Usa la formula quadratica per trovare le soluzioni.
Passaggio 2.4.4
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.4.5
Semplifica.
Tocca per altri passaggi...
Passaggio 2.4.5.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.4.5.1.1
Eleva alla potenza di .
Passaggio 2.4.5.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.4.5.1.2.1
Moltiplica per .
Passaggio 2.4.5.1.2.2
Moltiplica per .
Passaggio 2.4.5.1.3
Somma e .
Passaggio 2.4.5.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.4.5.1.4.1
Scomponi da .
Passaggio 2.4.5.1.4.2
Riscrivi come .
Passaggio 2.4.5.1.5
Estrai i termini dal radicale.
Passaggio 2.4.5.2
Moltiplica per .
Passaggio 2.4.5.3
Semplifica .
Passaggio 2.4.6
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.4.6.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.4.6.1.1
Eleva alla potenza di .
Passaggio 2.4.6.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.4.6.1.2.1
Moltiplica per .
Passaggio 2.4.6.1.2.2
Moltiplica per .
Passaggio 2.4.6.1.3
Somma e .
Passaggio 2.4.6.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.4.6.1.4.1
Scomponi da .
Passaggio 2.4.6.1.4.2
Riscrivi come .
Passaggio 2.4.6.1.5
Estrai i termini dal radicale.
Passaggio 2.4.6.2
Moltiplica per .
Passaggio 2.4.6.3
Semplifica .
Passaggio 2.4.6.4
Cambia da a .
Passaggio 2.4.7
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.4.7.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.4.7.1.1
Eleva alla potenza di .
Passaggio 2.4.7.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.4.7.1.2.1
Moltiplica per .
Passaggio 2.4.7.1.2.2
Moltiplica per .
Passaggio 2.4.7.1.3
Somma e .
Passaggio 2.4.7.1.4
Riscrivi come .
Tocca per altri passaggi...
Passaggio 2.4.7.1.4.1
Scomponi da .
Passaggio 2.4.7.1.4.2
Riscrivi come .
Passaggio 2.4.7.1.5
Estrai i termini dal radicale.
Passaggio 2.4.7.2
Moltiplica per .
Passaggio 2.4.7.3
Semplifica .
Passaggio 2.4.7.4
Cambia da a .
Passaggio 2.4.8
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 3
Trova i punti dove la derivata seconda è .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci in per trovare il valore di .
Tocca per altri passaggi...
Passaggio 3.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.1.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.1.2.1
Eleva alla potenza di .
Passaggio 3.1.2.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.1.2.2.1
Eleva alla potenza di .
Passaggio 3.1.2.2.2
Moltiplica per .
Passaggio 3.1.2.3
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 3.1.2.3.1
Sottrai da .
Passaggio 3.1.2.3.2
Somma e .
Passaggio 3.1.2.3.3
Moltiplica per .
Passaggio 3.1.2.4
La risposta finale è .
Passaggio 3.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.3
Sostituisci in per trovare il valore di .
Tocca per altri passaggi...
Passaggio 3.3.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.3.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 3.3.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 3.3.2.1.1
Eleva alla potenza di .
Passaggio 3.3.2.1.2
Moltiplica per .
Passaggio 3.3.2.2
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 3.3.2.2.1
Somma e .
Passaggio 3.3.2.2.2
Somma e .
Passaggio 3.3.2.2.3
Sposta alla sinistra di .
Passaggio 3.3.2.3
La risposta finale è .
Passaggio 3.4
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 3.5
Determina i punti che potrebbero essere punti di flesso.
Passaggio 4
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 5
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 5.2.1
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 5.2.2
Scrivi ogni espressione con un comune denominatore di , moltiplicando ciascuna per il fattore appropriato di .
Tocca per altri passaggi...
Passaggio 5.2.2.1
Moltiplica per .
Passaggio 5.2.2.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 5.2.2.2.1
Sposta .
Passaggio 5.2.2.2.2
Usa la regola della potenza per combinare gli esponenti.
Passaggio 5.2.2.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 5.2.2.2.4
Somma e .
Passaggio 5.2.3
Riduci i numeratori su un comune denominatore.
Passaggio 5.2.4
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.4.1
Elimina il fattore comune di .
Tocca per altri passaggi...
Passaggio 5.2.4.1.1
Elimina il fattore comune.
Passaggio 5.2.4.1.2
Riscrivi l'espressione.
Passaggio 5.2.4.2
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 5.2.4.2.1
Calcola l'esponente.
Passaggio 5.2.4.2.2
Moltiplica per .
Passaggio 5.2.4.2.3
Somma e .
Passaggio 5.2.5
La risposta finale è .
Passaggio 5.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Dividi per .
Passaggio 6.2.1.4
Eleva alla potenza di .
Passaggio 6.2.1.5
Moltiplica per .
Passaggio 6.2.1.6
Dividi per .
Passaggio 6.2.1.7
Moltiplica per .
Passaggio 6.2.1.8
Eleva alla potenza di .
Passaggio 6.2.1.9
Moltiplica per .
Passaggio 6.2.1.10
Dividi per .
Passaggio 6.2.1.11
Moltiplica per .
Passaggio 6.2.2
Semplifica sottraendo i numeri.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Sottrai da .
Passaggio 6.2.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 7
Sostituisci un valore dell'intervallo nella derivata seconda per determinare se è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 7.1
Sostituisci la variabile con nell'espressione.
Passaggio 7.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 7.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 7.2.1.1
Eleva alla potenza di .
Passaggio 7.2.1.2
Moltiplica per .
Passaggio 7.2.1.3
Dividi per .
Passaggio 7.2.1.4
Eleva alla potenza di .
Passaggio 7.2.1.5
Moltiplica per .
Passaggio 7.2.1.6
Dividi per .
Passaggio 7.2.1.7
Moltiplica per .
Passaggio 7.2.1.8
Eleva alla potenza di .
Passaggio 7.2.1.9
Moltiplica per .
Passaggio 7.2.1.10
Dividi per .
Passaggio 7.2.1.11
Moltiplica per .
Passaggio 7.2.2
Semplifica sottraendo i numeri.
Tocca per altri passaggi...
Passaggio 7.2.2.1
Sottrai da .
Passaggio 7.2.2.2
Sottrai da .
Passaggio 7.2.3
La risposta finale è .
Passaggio 7.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 8
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso il punto di flesso è .
Passaggio 9