Calcolo Esempi

Trovare i Massimi e i Minimi Locali f(x) = natural log of x^2-1
Passaggio 1
Trova la derivata prima della funzione.
Tocca per altri passaggi...
Passaggio 1.1
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 1.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.1.2
La derivata di rispetto a è .
Passaggio 1.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.2
Differenzia.
Tocca per altri passaggi...
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4
Riduci le frazioni.
Tocca per altri passaggi...
Passaggio 1.2.4.1
Somma e .
Passaggio 1.2.4.2
e .
Passaggio 1.2.4.3
e .
Passaggio 2
Trova la derivata seconda della funzione.
Tocca per altri passaggi...
Passaggio 2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.2
Differenzia usando la regola del quoziente secondo cui è dove e .
Passaggio 2.3
Differenzia.
Tocca per altri passaggi...
Passaggio 2.3.1
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.2
Moltiplica per .
Passaggio 2.3.3
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.5
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.6
Semplifica l'espressione.
Tocca per altri passaggi...
Passaggio 2.3.6.1
Somma e .
Passaggio 2.3.6.2
Moltiplica per .
Passaggio 2.4
Eleva alla potenza di .
Passaggio 2.5
Eleva alla potenza di .
Passaggio 2.6
Usa la regola della potenza per combinare gli esponenti.
Passaggio 2.7
Somma e .
Passaggio 2.8
Sottrai da .
Passaggio 2.9
e .
Passaggio 2.10
Semplifica.
Tocca per altri passaggi...
Passaggio 2.10.1
Applica la proprietà distributiva.
Passaggio 2.10.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 2.10.2.1
Moltiplica per .
Passaggio 2.10.2.2
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Poiché non c'è alcun valore di che rende la derivata prima uguale a , non ci sono estremi locali.
Nessun estremo locale
Passaggio 5
Nessun estremo locale
Passaggio 6