Inserisci un problema...
Calcolo Esempi
,
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Trova la derivata prima.
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Calcola .
Passaggio 1.1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.2.3
Moltiplica per .
Passaggio 1.1.1.3
Calcola .
Passaggio 1.1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.1.3.3
Moltiplica per .
Passaggio 1.1.1.4
Riordina i termini.
Passaggio 1.1.2
La derivata prima di rispetto a è .
Passaggio 1.2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Passaggio 1.2.1
Poni la derivata prima uguale a .
Passaggio 1.2.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2.3
Dividi per ciascun termine in e semplifica.
Passaggio 1.2.3.1
Dividi per ciascun termine in .
Passaggio 1.2.3.2
Semplifica il lato sinistro.
Passaggio 1.2.3.2.1
Elimina il fattore comune di .
Passaggio 1.2.3.2.1.1
Elimina il fattore comune.
Passaggio 1.2.3.2.1.2
Dividi per .
Passaggio 1.2.3.3
Semplifica il lato destro.
Passaggio 1.2.3.3.1
Dividi per .
Passaggio 1.2.4
Trova la radice quadrata specificata di entrambi i lati dell'equazione per eliminare l'esponente sul lato sinistro.
Passaggio 1.2.5
Semplifica .
Passaggio 1.2.5.1
Riscrivi come .
Passaggio 1.2.5.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 1.2.6
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 1.2.6.1
Per prima cosa, usa il valore positivo di per trovare la prima soluzione.
Passaggio 1.2.6.2
Ora, usa il valore negativo del per trovare la seconda soluzione.
Passaggio 1.2.6.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 1.3
Trova i valori per cui la derivata è indefinita.
Passaggio 1.3.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 1.4
Risolvi per ciascun valore di dove la derivata è o indefinita.
Passaggio 1.4.1
Calcola per .
Passaggio 1.4.1.1
Sostituisci a .
Passaggio 1.4.1.2
Semplifica.
Passaggio 1.4.1.2.1
Semplifica ciascun termine.
Passaggio 1.4.1.2.1.1
Moltiplica per .
Passaggio 1.4.1.2.1.2
Eleva alla potenza di .
Passaggio 1.4.1.2.1.3
Moltiplica per .
Passaggio 1.4.1.2.2
Sottrai da .
Passaggio 1.4.2
Calcola per .
Passaggio 1.4.2.1
Sostituisci a .
Passaggio 1.4.2.2
Semplifica.
Passaggio 1.4.2.2.1
Semplifica ciascun termine.
Passaggio 1.4.2.2.1.1
Moltiplica per .
Passaggio 1.4.2.2.1.2
Eleva alla potenza di .
Passaggio 1.4.2.2.1.3
Moltiplica per .
Passaggio 1.4.2.2.2
Somma e .
Passaggio 1.4.3
Elenca tutti i punti.
Passaggio 2
Escludi i punti che non si trovano sull'intervallo.
Passaggio 3
Passaggio 3.1
Calcola per .
Passaggio 3.1.1
Sostituisci a .
Passaggio 3.1.2
Semplifica.
Passaggio 3.1.2.1
Semplifica ciascun termine.
Passaggio 3.1.2.1.1
Moltiplica per .
Passaggio 3.1.2.1.2
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 3.1.2.1.3
Moltiplica per .
Passaggio 3.1.2.2
Somma e .
Passaggio 3.2
Calcola per .
Passaggio 3.2.1
Sostituisci a .
Passaggio 3.2.2
Semplifica.
Passaggio 3.2.2.1
Semplifica ciascun termine.
Passaggio 3.2.2.1.1
Moltiplica per .
Passaggio 3.2.2.1.2
Eleva alla potenza di .
Passaggio 3.2.2.1.3
Moltiplica per .
Passaggio 3.2.2.2
Sottrai da .
Passaggio 3.3
Elenca tutti i punti.
Passaggio 4
Confronta i valori trovati per ciascun valore di per determinare il massimo e il minimo assoluti su un intervallo dato. Il massimo comparirà in corrispondenza del valore più alto, mentre il minimo comparirà in corrispondenza del valore più basso.
Massimo assoluto:
Minimo assoluto:
Passaggio 5