Calcolo Esempi

Valutare l''Integrale integrale di (x+3)/(4x+4) rispetto a x
Passaggio 1
Dividi per .
Tocca per altri passaggi...
Passaggio 1.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
++
Passaggio 1.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
++
Passaggio 1.3
Moltiplica il nuovo quoziente per il divisore.
++
++
Passaggio 1.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
++
--
Passaggio 1.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
++
--
+
Passaggio 1.6
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 3.1
Scomponi da .
Passaggio 3.2
Elimina i fattori comuni.
Tocca per altri passaggi...
Passaggio 3.2.1
Scomponi da .
Passaggio 3.2.2
Scomponi da .
Passaggio 3.2.3
Scomponi da .
Passaggio 3.2.4
Elimina il fattore comune.
Passaggio 3.2.5
Riscrivi l'espressione.
Passaggio 4
Applica la regola costante.
Passaggio 5
Sia . Allora , quindi . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 5.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 5.1.1
Differenzia .
Passaggio 5.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 5.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 5.1.3.3
Moltiplica per .
Passaggio 5.1.4
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 5.1.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.1.4.2
Somma e .
Passaggio 5.2
Riscrivi il problema usando e .
Passaggio 6
Semplifica.
Tocca per altri passaggi...
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Sposta alla sinistra di .
Passaggio 7
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 8
L'integrale di rispetto a è .
Passaggio 9
Semplifica.
Passaggio 10
Sostituisci tutte le occorrenze di con .