Calcolo Esempi

Valutare Utilizzando la Regola di L''Hospital limite per x tendente a 4 di (x-4)/( radice quadrata di x-2)
Passaggio 1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Tocca per altri passaggi...
Passaggio 1.2.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.2.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.2.1.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.2.2
Calcola il limite di inserendo per .
Passaggio 1.2.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.2.3.1
Moltiplica per .
Passaggio 1.2.3.2
Sottrai da .
Passaggio 1.3
Calcola il limite del denominatore.
Tocca per altri passaggi...
Passaggio 1.3.1
Calcola il limite.
Tocca per altri passaggi...
Passaggio 1.3.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.3.1.2
Sposta il limite sotto il segno radicale.
Passaggio 1.3.1.3
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.3.2
Calcola il limite di inserendo per .
Passaggio 1.3.3
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 1.3.3.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.3.3.1.1
Riscrivi come .
Passaggio 1.3.3.1.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 1.3.3.1.3
Moltiplica per .
Passaggio 1.3.3.2
Sottrai da .
Passaggio 1.3.3.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.3.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.5
Somma e .
Passaggio 3.6
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.7
Calcola .
Tocca per altri passaggi...
Passaggio 3.7.1
Usa per riscrivere come .
Passaggio 3.7.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.7.3
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.7.4
e .
Passaggio 3.7.5
Riduci i numeratori su un comune denominatore.
Passaggio 3.7.6
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 3.7.6.1
Moltiplica per .
Passaggio 3.7.6.2
Sottrai da .
Passaggio 3.7.7
Sposta il negativo davanti alla frazione.
Passaggio 3.8
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.9
Semplifica.
Tocca per altri passaggi...
Passaggio 3.9.1
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 3.9.2
Raccogli i termini.
Tocca per altri passaggi...
Passaggio 3.9.2.1
Moltiplica per .
Passaggio 3.9.2.2
Somma e .
Passaggio 4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 5
Riscrivi come .
Passaggio 6
Calcola il limite.
Tocca per altri passaggi...
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 6.3
Sposta il limite sotto il segno radicale.
Passaggio 7
Calcola il limite di inserendo per .
Passaggio 8
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 8.1
Riscrivi come .
Passaggio 8.2
Estrai i termini dal radicale, presupponendo numeri reali positivi.
Passaggio 8.3
Moltiplica per .