Calcolo Esempi

Valutare Utilizzando la Regola di L''Hospital limite per x tendente a infinity di x^(1/(x^2))
Passaggio 1
Usa la proprietà dei logaritmi per semplificare il limite.
Tocca per altri passaggi...
Passaggio 1.1
Riscrivi come .
Passaggio 1.2
Espandi spostando fuori dal logaritmo.
Passaggio 2
Calcola il limite.
Tocca per altri passaggi...
Passaggio 2.1
Sposta il limite nell'esponente.
Passaggio 2.2
e .
Passaggio 3
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 3.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 3.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 3.1.2
Con un logaritmo che tende a infinito, il valore diventa .
Passaggio 3.1.3
Il limite all'infinito di un polinomio il cui coefficiente direttivo è più infinito.
Passaggio 3.1.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 3.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.3.1
Differenzia numeratore e denominatore.
Passaggio 3.3.2
La derivata di rispetto a è .
Passaggio 3.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 3.5
Combina i fattori.
Tocca per altri passaggi...
Passaggio 3.5.1
Moltiplica per .
Passaggio 3.5.2
Eleva alla potenza di .
Passaggio 3.5.3
Eleva alla potenza di .
Passaggio 3.5.4
Usa la regola della potenza per combinare gli esponenti.
Passaggio 3.5.5
Somma e .
Passaggio 4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 5
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .
Passaggio 6
Semplifica la risposta.
Tocca per altri passaggi...
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Qualsiasi valore elevato a è .