Calcolo Esempi

Valutare il Limite limite per x tendente a negative infinity di 3xe^x
Passaggio 1
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 2
Riscrivi come .
Passaggio 3
Applica la regola di de l'Hôpital
Tocca per altri passaggi...
Passaggio 3.1
Calcola il limite del numeratore e il limite del denominatore.
Tocca per altri passaggi...
Passaggio 3.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 3.1.2
Il limite a meno infinito di un polinomio con grado dispari il cui coefficiente direttivo è meno infinito.
Passaggio 3.1.3
Poiché l'esponente tende a , la quantità tende a .
Passaggio 3.1.4
Infinito diviso per infinito è indefinito.
Indefinito
Passaggio 3.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3.3
Trova la derivata del numeratore e del denominatore.
Tocca per altri passaggi...
Passaggio 3.3.1
Differenzia numeratore e denominatore.
Passaggio 3.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.3.3
Differenzia usando la regola della catena secondo cui è dove e .
Tocca per altri passaggi...
Passaggio 3.3.3.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.3.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 3.3.3.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.5
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.3.6
Moltiplica per .
Passaggio 3.3.7
Sposta alla sinistra di .
Passaggio 3.3.8
Riscrivi come .
Passaggio 3.4
Elimina il fattore comune di e .
Tocca per altri passaggi...
Passaggio 3.4.1
Riscrivi come .
Passaggio 3.4.2
Sposta il negativo davanti alla frazione.
Passaggio 4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 5
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .
Passaggio 6
Moltiplica per zero.
Tocca per altri passaggi...
Passaggio 6.1
Moltiplica per .
Passaggio 6.2
Moltiplica per .