Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 1.2
Calcola il limite del numeratore.
Passaggio 1.2.1
Calcola il limite.
Passaggio 1.2.1.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.2.1.2
Sposta il limite all'interno della funzione trigonometrica, poiché il coseno è continuo.
Passaggio 1.2.1.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.2.1.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.2.2
Calcola il limite di inserendo per .
Passaggio 1.2.3
Semplifica la risposta.
Passaggio 1.2.3.1
Semplifica ciascun termine.
Passaggio 1.2.3.1.1
Moltiplica per .
Passaggio 1.2.3.1.2
Il valore esatto di è .
Passaggio 1.2.3.1.3
Moltiplica per .
Passaggio 1.2.3.2
Sottrai da .
Passaggio 1.3
Calcola il limite del denominatore.
Passaggio 1.3.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 1.3.2
Sposta il limite nell'esponente.
Passaggio 1.3.3
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 1.3.4
Calcola il limite di che è costante, mentre tende a .
Passaggio 1.3.5
Semplifica i termini.
Passaggio 1.3.5.1
Calcola il limite di inserendo per .
Passaggio 1.3.5.2
Semplifica la risposta.
Passaggio 1.3.5.2.1
Semplifica ciascun termine.
Passaggio 1.3.5.2.1.1
Qualsiasi valore elevato a è .
Passaggio 1.3.5.2.1.2
Moltiplica per .
Passaggio 1.3.5.2.2
Sottrai da .
Passaggio 1.3.5.2.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.3.5.3
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.3.6
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 3
Passaggio 3.1
Differenzia numeratore e denominatore.
Passaggio 3.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.3
Calcola .
Passaggio 3.3.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 3.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 3.3.1.2
La derivata di rispetto a è .
Passaggio 3.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.3.4
Moltiplica per .
Passaggio 3.3.5
Moltiplica per .
Passaggio 3.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.5
Somma e .
Passaggio 3.6
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 3.7
Calcola .
Passaggio 3.7.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 3.7.1.1
Per applicare la regola della catena, imposta come .
Passaggio 3.7.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 3.7.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 3.7.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.7.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 3.7.4
Moltiplica per .
Passaggio 3.7.5
Sposta alla sinistra di .
Passaggio 3.7.6
Riscrivi come .
Passaggio 3.8
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 3.9
Somma e .
Passaggio 4
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 5
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 6
Sposta il limite all'interno della funzione trigonometrica, poiché il seno è continuo.
Passaggio 7
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 8
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 9
Sposta il limite nell'esponente.
Passaggio 10
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 11
Passaggio 11.1
Calcola il limite di inserendo per .
Passaggio 11.2
Calcola il limite di inserendo per .
Passaggio 12
Passaggio 12.1
Semplifica il numeratore.
Passaggio 12.1.1
Moltiplica per .
Passaggio 12.1.2
Il valore esatto di è .
Passaggio 12.2
Qualsiasi valore elevato a è .
Passaggio 12.3
Moltiplica per .
Passaggio 12.4
Dividi per .
Passaggio 12.5
Moltiplica per .