Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Scomponi la frazione e moltiplica per il comune denominatore.
Passaggio 1.1.1
Scomponi usando il metodo AC.
Passaggio 1.1.1.1
Considera la forma . Trova una coppia di interi il cui prodotto è e la cui formula è . In questo caso, il cui prodotto è e la cui somma è .
Passaggio 1.1.1.2
Scrivi la forma fattorizzata usando questi interi.
Passaggio 1.1.2
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 1.1.3
Per ciascun fattore nel denominatore, crea una nuova frazione usando il fattore come denominatore e un valore sconosciuto come numeratore. Poiché il fattore nel denominatore è lineare, inserisci una singola variabile al suo posto .
Passaggio 1.1.4
Moltiplica ogni frazione nell'equazione per il denominatore dell'espressione originale. In questo caso, il denominatore è .
Passaggio 1.1.5
Elimina il fattore comune di .
Passaggio 1.1.5.1
Elimina il fattore comune.
Passaggio 1.1.5.2
Riscrivi l'espressione.
Passaggio 1.1.6
Elimina il fattore comune di .
Passaggio 1.1.6.1
Elimina il fattore comune.
Passaggio 1.1.6.2
Dividi per .
Passaggio 1.1.7
Semplifica ciascun termine.
Passaggio 1.1.7.1
Elimina il fattore comune di .
Passaggio 1.1.7.1.1
Elimina il fattore comune.
Passaggio 1.1.7.1.2
Dividi per .
Passaggio 1.1.7.2
Applica la proprietà distributiva.
Passaggio 1.1.7.3
Sposta alla sinistra di .
Passaggio 1.1.7.4
Elimina il fattore comune di .
Passaggio 1.1.7.4.1
Elimina il fattore comune.
Passaggio 1.1.7.4.2
Dividi per .
Passaggio 1.1.7.5
Applica la proprietà distributiva.
Passaggio 1.1.7.6
Sposta alla sinistra di .
Passaggio 1.1.7.7
Riscrivi come .
Passaggio 1.1.8
Sposta .
Passaggio 1.2
Crea equazioni per le variabili della frazione parziale e usali per impostare un sistema di equazioni.
Passaggio 1.2.1
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti di da ogni lato dell'equazione. Affinché l'equazione sia tale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.2
Crea un'equazione per le variabili della frazione parziale equiparando i coefficienti dei termini che non contengono . Affinché l'equazione sia uguale, i coefficienti equivalenti su ogni lato dell'equazione devono essere uguali.
Passaggio 1.2.3
Imposta il sistema di equazioni per trovare i coefficienti delle frazioni parziali.
Passaggio 1.3
Risolvi il sistema di equazioni.
Passaggio 1.3.1
Risolvi per in .
Passaggio 1.3.1.1
Riscrivi l'equazione come .
Passaggio 1.3.1.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.3.2
Sostituisci tutte le occorrenze di con in ogni equazione.
Passaggio 1.3.2.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.2.2
Semplifica il lato destro.
Passaggio 1.3.2.2.1
Semplifica .
Passaggio 1.3.2.2.1.1
Semplifica ciascun termine.
Passaggio 1.3.2.2.1.1.1
Applica la proprietà distributiva.
Passaggio 1.3.2.2.1.1.2
Moltiplica per .
Passaggio 1.3.2.2.1.1.3
Moltiplica per .
Passaggio 1.3.2.2.1.1.4
Riscrivi come .
Passaggio 1.3.2.2.1.2
Sottrai da .
Passaggio 1.3.3
Risolvi per in .
Passaggio 1.3.3.1
Riscrivi l'equazione come .
Passaggio 1.3.3.2
Sposta tutti i termini non contenenti sul lato destro dell'equazione.
Passaggio 1.3.3.2.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.3.3.2.2
Sottrai da .
Passaggio 1.3.3.3
Dividi per ciascun termine in e semplifica.
Passaggio 1.3.3.3.1
Dividi per ciascun termine in .
Passaggio 1.3.3.3.2
Semplifica il lato sinistro.
Passaggio 1.3.3.3.2.1
Elimina il fattore comune di .
Passaggio 1.3.3.3.2.1.1
Elimina il fattore comune.
Passaggio 1.3.3.3.2.1.2
Dividi per .
Passaggio 1.3.3.3.3
Semplifica il lato destro.
Passaggio 1.3.3.3.3.1
Dividi per .
Passaggio 1.3.4
Sostituisci tutte le occorrenze di con in ogni equazione.
Passaggio 1.3.4.1
Sostituisci tutte le occorrenze di in con .
Passaggio 1.3.4.2
Semplifica il lato destro.
Passaggio 1.3.4.2.1
Semplifica .
Passaggio 1.3.4.2.1.1
Moltiplica per .
Passaggio 1.3.4.2.1.2
Sottrai da .
Passaggio 1.3.5
Elenca tutte le soluzioni.
Passaggio 1.4
Sostituisci ogni coefficiente della frazione parziale in con i valori trovati per e .
Passaggio 1.5
Rimuovi lo zero dall'espressione.
Passaggio 2
Dividi il singolo integrale in più integrali.
Passaggio 3
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 4
Passaggio 4.1
Sia . Trova .
Passaggio 4.1.1
Differenzia .
Passaggio 4.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.5
Somma e .
Passaggio 4.2
Sostituisci il limite inferiore a in .
Passaggio 4.3
Sottrai da .
Passaggio 4.4
Sostituisci il limite superiore a in .
Passaggio 4.5
Sottrai da .
Passaggio 4.6
I valori trovati per e saranno usati per calcolare l'integrale definito.
Passaggio 4.7
Riscrivi il problema usando , e i nuovi limiti dell'integrazione.
Passaggio 5
L'integrale di rispetto a è .
Passaggio 6
Passaggio 6.1
Sia . Trova .
Passaggio 6.1.1
Differenzia .
Passaggio 6.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 6.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 6.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 6.1.5
Somma e .
Passaggio 6.2
Sostituisci il limite inferiore a in .
Passaggio 6.3
Somma e .
Passaggio 6.4
Sostituisci il limite superiore a in .
Passaggio 6.5
Somma e .
Passaggio 6.6
I valori trovati per e saranno usati per calcolare l'integrale definito.
Passaggio 6.7
Riscrivi il problema usando , e i nuovi limiti dell'integrazione.
Passaggio 7
L'integrale di rispetto a è .
Passaggio 8
Passaggio 8.1
Calcola per e per .
Passaggio 8.2
Calcola per e per .
Passaggio 8.3
Rimuovi le parentesi non necessarie.
Passaggio 9
Passaggio 9.1
Usa la proprietà del quoziente dei logaritmi, .
Passaggio 9.2
Usa la proprietà del quoziente dei logaritmi, .
Passaggio 10
Passaggio 10.1
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 10.2
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 10.3
Dividi per .
Passaggio 10.4
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 10.5
Il valore assoluto è la distanza tra un numero e zero. La distanza tra e è .
Passaggio 10.6
Elimina il fattore comune di e .
Passaggio 10.6.1
Scomponi da .
Passaggio 10.6.2
Elimina i fattori comuni.
Passaggio 10.6.2.1
Scomponi da .
Passaggio 10.6.2.2
Elimina il fattore comune.
Passaggio 10.6.2.3
Riscrivi l'espressione.
Passaggio 11
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale:
Passaggio 12