Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia.
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.2.4
e .
Passaggio 1.1.2.5
Moltiplica per .
Passaggio 1.1.2.6
e .
Passaggio 1.1.2.7
Elimina il fattore comune di e .
Passaggio 1.1.2.7.1
Scomponi da .
Passaggio 1.1.2.7.2
Elimina i fattori comuni.
Passaggio 1.1.2.7.2.1
Scomponi da .
Passaggio 1.1.2.7.2.2
Elimina il fattore comune.
Passaggio 1.1.2.7.2.3
Riscrivi l'espressione.
Passaggio 1.1.2.7.2.4
Dividi per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.2
Trova la derivata seconda.
Passaggio 1.2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2.2
Calcola .
Passaggio 1.2.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.2.3
Moltiplica per .
Passaggio 1.2.3
Calcola .
Passaggio 1.2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.2.3.3
Moltiplica per .
Passaggio 1.2.4
Differenzia usando la regola della costante.
Passaggio 1.2.4.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.2.4.2
Somma e .
Passaggio 1.3
La derivata seconda di rispetto a è .
Passaggio 2
Passaggio 2.1
Imposta la derivata seconda uguale a .
Passaggio 2.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.3
Dividi per ciascun termine in e semplifica.
Passaggio 2.3.1
Dividi per ciascun termine in .
Passaggio 2.3.2
Semplifica il lato sinistro.
Passaggio 2.3.2.1
Elimina il fattore comune di .
Passaggio 2.3.2.1.1
Elimina il fattore comune.
Passaggio 2.3.2.1.2
Dividi per .
Passaggio 2.3.3
Semplifica il lato destro.
Passaggio 2.3.3.1
Elimina il fattore comune di e .
Passaggio 2.3.3.1.1
Scomponi da .
Passaggio 2.3.3.1.2
Elimina i fattori comuni.
Passaggio 2.3.3.1.2.1
Scomponi da .
Passaggio 2.3.3.1.2.2
Elimina il fattore comune.
Passaggio 2.3.3.1.2.3
Riscrivi l'espressione.
Passaggio 3
Passaggio 3.1
Sostituisci in per trovare il valore di .
Passaggio 3.1.1
Sostituisci la variabile con nell'espressione.
Passaggio 3.1.2
Semplifica il risultato.
Passaggio 3.1.2.1
Semplifica ciascun termine.
Passaggio 3.1.2.1.1
Applica la regola del prodotto a .
Passaggio 3.1.2.1.2
Uno elevato a qualsiasi potenza è uno.
Passaggio 3.1.2.1.3
Eleva alla potenza di .
Passaggio 3.1.2.1.4
Applica la regola del prodotto a .
Passaggio 3.1.2.1.5
Uno elevato a qualsiasi potenza è uno.
Passaggio 3.1.2.1.6
Eleva alla potenza di .
Passaggio 3.1.2.1.7
Moltiplica .
Passaggio 3.1.2.1.7.1
Moltiplica per .
Passaggio 3.1.2.1.7.2
Moltiplica per .
Passaggio 3.1.2.1.8
Elimina il fattore comune di .
Passaggio 3.1.2.1.8.1
Scomponi da .
Passaggio 3.1.2.1.8.2
Elimina il fattore comune.
Passaggio 3.1.2.1.8.3
Riscrivi l'espressione.
Passaggio 3.1.2.2
Riduci le frazioni.
Passaggio 3.1.2.2.1
Riduci i numeratori su un comune denominatore.
Passaggio 3.1.2.2.2
Sottrai da .
Passaggio 3.1.2.3
Semplifica ciascun termine.
Passaggio 3.1.2.3.1
Elimina il fattore comune di e .
Passaggio 3.1.2.3.1.1
Scomponi da .
Passaggio 3.1.2.3.1.2
Elimina i fattori comuni.
Passaggio 3.1.2.3.1.2.1
Scomponi da .
Passaggio 3.1.2.3.1.2.2
Elimina il fattore comune.
Passaggio 3.1.2.3.1.2.3
Riscrivi l'espressione.
Passaggio 3.1.2.3.2
Sposta il negativo davanti alla frazione.
Passaggio 3.1.2.4
Per scrivere come una frazione con un comune denominatore, moltiplicala per .
Passaggio 3.1.2.5
e .
Passaggio 3.1.2.6
Riduci i numeratori su un comune denominatore.
Passaggio 3.1.2.7
Semplifica il numeratore.
Passaggio 3.1.2.7.1
Moltiplica per .
Passaggio 3.1.2.7.2
Sottrai da .
Passaggio 3.1.2.8
Sposta il negativo davanti alla frazione.
Passaggio 3.1.2.9
La risposta finale è .
Passaggio 3.2
Il punto trovato sostituendo in è . Questo punto può essere un punto di flesso.
Passaggio 4
Dividi in intervalli intorno ai punti che potrebbero potenzialmente essere punti di flesso.
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Moltiplica per .
Passaggio 5.2.2
Sottrai da .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
Per , la derivata seconda è . Poiché il valore è negativo, la derivata seconda è decrescente nell'intervallo .
Decrescente su perché
Decrescente su perché
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Moltiplica per .
Passaggio 6.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di , la derivata seconda è . Poiché il valore è positivo, la derivata seconda è crescente sull'intervallo .
Crescente su perché
Crescente su perché
Passaggio 7
Un punto di flesso è un punto su una curva in cui la concavità cambia di segno, da più a meno oppure da meno a più. In questo caso il punto di flesso è .
Passaggio 8