Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.3
Calcola .
Passaggio 1.3.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 1.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 1.3.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 1.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 1.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.3.4
Moltiplica per .
Passaggio 1.3.5
Sposta alla sinistra di .
Passaggio 1.3.6
Riscrivi come .
Passaggio 2
Passaggio 2.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.3
Calcola .
Passaggio 2.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.2
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 2.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 2.3.2.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 2.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 2.3.3
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.3.4
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.3.5
Moltiplica per .
Passaggio 2.3.6
Sposta alla sinistra di .
Passaggio 2.3.7
Riscrivi come .
Passaggio 2.3.8
Moltiplica per .
Passaggio 2.3.9
Moltiplica per .
Passaggio 3
Per trovare i valori locali di minimo e di massimo della funzione, imposta la derivata in modo che sia uguale a e risolvi.
Passaggio 4
Passaggio 4.1
Trova la derivata prima.
Passaggio 4.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.1.3
Calcola .
Passaggio 4.1.3.1
Differenzia usando la regola della catena secondo cui è dove e .
Passaggio 4.1.3.1.1
Per applicare la regola della catena, imposta come .
Passaggio 4.1.3.1.2
Differenzia usando la regola esponenziale secondo cui è dove =.
Passaggio 4.1.3.1.3
Sostituisci tutte le occorrenze di con .
Passaggio 4.1.3.2
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.1.3.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.1.3.4
Moltiplica per .
Passaggio 4.1.3.5
Sposta alla sinistra di .
Passaggio 4.1.3.6
Riscrivi come .
Passaggio 4.2
La derivata prima di rispetto a è .
Passaggio 5
Passaggio 5.1
Poni la derivata prima uguale a .
Passaggio 5.2
Sposta sul lato destro dell'equazione aggiungendolo a entrambi i lati.
Passaggio 5.3
Poiché le basi sono uguali, allora due espressioni sono uguali solo se anche gli esponenti sono uguali.
Passaggio 5.4
Risolvi per .
Passaggio 5.4.1
Sposta tutti i termini contenenti sul lato sinistro dell'equazione.
Passaggio 5.4.1.1
Somma a entrambi i lati dell'equazione.
Passaggio 5.4.1.2
Somma e .
Passaggio 5.4.2
Dividi per ciascun termine in e semplifica.
Passaggio 5.4.2.1
Dividi per ciascun termine in .
Passaggio 5.4.2.2
Semplifica il lato sinistro.
Passaggio 5.4.2.2.1
Elimina il fattore comune di .
Passaggio 5.4.2.2.1.1
Elimina il fattore comune.
Passaggio 5.4.2.2.1.2
Dividi per .
Passaggio 5.4.2.3
Semplifica il lato destro.
Passaggio 5.4.2.3.1
Dividi per .
Passaggio 6
Passaggio 6.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Passaggio 7
Punti critici da calcolare.
Passaggio 8
Calcola la derivata seconda per . Se la derivata seconda è positiva, allora si tratta di un minimo locale. Se è negativa, allora è un massimo locale.
Passaggio 9
Passaggio 9.1
Semplifica ciascun termine.
Passaggio 9.1.1
Qualsiasi valore elevato a è .
Passaggio 9.1.2
Moltiplica per .
Passaggio 9.1.3
Qualsiasi valore elevato a è .
Passaggio 9.2
Somma e .
Passaggio 10
è un minimo locale perché il valore della derivata seconda è positivo. Ciò si definisce test della derivata seconda.
è un minimo locale
Passaggio 11
Passaggio 11.1
Sostituisci la variabile con nell'espressione.
Passaggio 11.2
Semplifica il risultato.
Passaggio 11.2.1
Semplifica ciascun termine.
Passaggio 11.2.1.1
Qualsiasi valore elevato a è .
Passaggio 11.2.1.2
Moltiplica per .
Passaggio 11.2.1.3
Qualsiasi valore elevato a è .
Passaggio 11.2.2
Somma e .
Passaggio 11.2.3
La risposta finale è .
Passaggio 12
Questi sono gli estremi locali per .
è un minimo locale
Passaggio 13