Calcolo Esempi

Trovare la Primitiva logaritmo naturale di 1+x
Passaggio 1
Scrivi come funzione.
Passaggio 2
È possibile trovare la funzione determinando l'integrale indefinito della derivata .
Passaggio 3
Imposta l'integrale per risolvere.
Passaggio 4
Integra per parti usando la formula , dove e .
Passaggio 5
e .
Passaggio 6
Dividi per .
Tocca per altri passaggi...
Passaggio 6.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
++
Passaggio 6.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
++
Passaggio 6.3
Moltiplica il nuovo quoziente per il divisore.
++
++
Passaggio 6.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
++
--
Passaggio 6.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
++
--
-
Passaggio 6.6
La risposta finale è il quoziente più il resto sopra il divisore.
Passaggio 7
Dividi il singolo integrale in più integrali.
Passaggio 8
Applica la regola costante.
Passaggio 9
Poiché è costante rispetto a , sposta fuori dall'integrale.
Passaggio 10
Sia . Allora . Riscrivi usando e .
Tocca per altri passaggi...
Passaggio 10.1
Sia . Trova .
Tocca per altri passaggi...
Passaggio 10.1.1
Differenzia .
Passaggio 10.1.2
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 10.1.3
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 10.1.4
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 10.1.5
Somma e .
Passaggio 10.2
Riscrivi il problema usando e .
Passaggio 11
L'integrale di rispetto a è .
Passaggio 12
Semplifica.
Passaggio 13
Sostituisci tutte le occorrenze di con .
Passaggio 14
La risposta è l'antiderivata della funzione .