Inserisci un problema...
Calcolo Esempi
Passaggio 1
Passaggio 1.1
Scrivi come una frazione con un comune denominatore.
Passaggio 1.2
Riduci i numeratori su un comune denominatore.
Passaggio 2
Passaggio 2.1
Riscrivi come .
Passaggio 2.2
Espandi spostando fuori dal logaritmo.
Passaggio 3
Sposta il limite nell'esponente.
Passaggio 4
Riscrivi come .
Passaggio 5
Passaggio 5.1
Calcola il limite del numeratore e il limite del denominatore.
Passaggio 5.1.1
Trova il limite del numeratore e il limite del denominatore.
Passaggio 5.1.2
Calcola il limite del numeratore.
Passaggio 5.1.2.1
Sposta il limite all'interno del logaritmo.
Passaggio 5.1.2.2
Dividi il numeratore e il denominatore per la massima potenza di nel denominatore, che è .
Passaggio 5.1.2.3
Calcola il limite.
Passaggio 5.1.2.3.1
Elimina il fattore comune di .
Passaggio 5.1.2.3.1.1
Elimina il fattore comune.
Passaggio 5.1.2.3.1.2
Riscrivi l'espressione.
Passaggio 5.1.2.3.2
Elimina il fattore comune di .
Passaggio 5.1.2.3.2.1
Elimina il fattore comune.
Passaggio 5.1.2.3.2.2
Riscrivi l'espressione.
Passaggio 5.1.2.3.3
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 5.1.2.3.4
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 5.1.2.3.5
Calcola il limite di che è costante, mentre tende a .
Passaggio 5.1.2.4
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .
Passaggio 5.1.2.5
Calcola il limite.
Passaggio 5.1.2.5.1
Calcola il limite di che è costante, mentre tende a .
Passaggio 5.1.2.5.2
Semplifica la risposta.
Passaggio 5.1.2.5.2.1
Dividi per .
Passaggio 5.1.2.5.2.2
Somma e .
Passaggio 5.1.2.5.2.3
Il logaritmo naturale di è .
Passaggio 5.1.3
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .
Passaggio 5.1.4
L'espressione contiene una divisione per . L'espressione è indefinita.
Indefinito
Passaggio 5.2
Poiché si trova in forma indeterminata, applica la regola di de l'Hôpital. La regola di de l'Hôpital afferma che il limite di un quoziente di funzioni è uguale al limite del quoziente delle loro derivate.
Passaggio 5.3
Trova la derivata del numeratore e del denominatore.
Passaggio 5.3.1
Differenzia numeratore e denominatore.
Passaggio 5.3.2
Differenzia usando la regola della catena, che indica che è dove e .
Passaggio 5.3.2.1
Per applicare la regola della catena, imposta come .
Passaggio 5.3.2.2
La derivata di rispetto a è .
Passaggio 5.3.2.3
Sostituisci tutte le occorrenze di con .
Passaggio 5.3.3
Moltiplica per il reciproco della frazione per dividere per .
Passaggio 5.3.4
Moltiplica per .
Passaggio 5.3.5
Differenzia usando la regola del quoziente, che indica che è dove e .
Passaggio 5.3.6
Moltiplica gli esponenti in .
Passaggio 5.3.6.1
Applica la regola di potenza e moltiplica gli esponenti, .
Passaggio 5.3.6.2
Moltiplica per .
Passaggio 5.3.7
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 5.3.8
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 5.3.9
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 5.3.10
Somma e .
Passaggio 5.3.11
Moltiplica per sommando gli esponenti.
Passaggio 5.3.11.1
Sposta .
Passaggio 5.3.11.2
Moltiplica per .
Passaggio 5.3.11.2.1
Eleva alla potenza di .
Passaggio 5.3.11.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 5.3.11.3
Somma e .
Passaggio 5.3.12
Sposta alla sinistra di .
Passaggio 5.3.13
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 5.3.14
Moltiplica per .
Passaggio 5.3.15
Moltiplica per .
Passaggio 5.3.16
Elimina i fattori comuni.
Passaggio 5.3.16.1
Scomponi da .
Passaggio 5.3.16.2
Elimina il fattore comune.
Passaggio 5.3.16.3
Riscrivi l'espressione.
Passaggio 5.3.17
Semplifica.
Passaggio 5.3.17.1
Applica la proprietà distributiva.
Passaggio 5.3.17.2
Applica la proprietà distributiva.
Passaggio 5.3.17.3
Applica la proprietà distributiva.
Passaggio 5.3.17.4
Semplifica il numeratore.
Passaggio 5.3.17.4.1
Semplifica ciascun termine.
Passaggio 5.3.17.4.1.1
Moltiplica per sommando gli esponenti.
Passaggio 5.3.17.4.1.1.1
Sposta .
Passaggio 5.3.17.4.1.1.2
Moltiplica per .
Passaggio 5.3.17.4.1.1.2.1
Eleva alla potenza di .
Passaggio 5.3.17.4.1.1.2.2
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 5.3.17.4.1.1.3
Somma e .
Passaggio 5.3.17.4.1.2
Moltiplica per .
Passaggio 5.3.17.4.2
Sottrai da .
Passaggio 5.3.17.4.3
Sottrai da .
Passaggio 5.3.17.5
Raccogli i termini.
Passaggio 5.3.17.5.1
Moltiplica per sommando gli esponenti.
Passaggio 5.3.17.5.1.1
Utilizza la regola per la potenza di una potenza per combinare gli esponenti.
Passaggio 5.3.17.5.1.2
Somma e .
Passaggio 5.3.17.5.2
Moltiplica per .
Passaggio 5.3.17.5.3
Sposta il negativo davanti alla frazione.
Passaggio 5.3.17.6
Scomponi da .
Passaggio 5.3.17.6.1
Scomponi da .
Passaggio 5.3.17.6.2
Moltiplica per .
Passaggio 5.3.17.6.3
Scomponi da .
Passaggio 5.3.17.7
Elimina il fattore comune di e .
Passaggio 5.3.17.7.1
Scomponi da .
Passaggio 5.3.17.7.2
Elimina i fattori comuni.
Passaggio 5.3.17.7.2.1
Scomponi da .
Passaggio 5.3.17.7.2.2
Elimina il fattore comune.
Passaggio 5.3.17.7.2.3
Riscrivi l'espressione.
Passaggio 5.3.18
Riscrivi come .
Passaggio 5.3.19
Differenzia usando la regola di potenza, che indica che è dove .
Passaggio 5.3.20
Riscrivi l'espressione usando la regola dell'esponente negativo .
Passaggio 5.4
Moltiplica il numeratore per il reciproco del denominatore.
Passaggio 5.5
Combina i fattori.
Passaggio 5.5.1
Moltiplica per .
Passaggio 5.5.2
Moltiplica per .
Passaggio 5.5.3
e .
Passaggio 5.6
Elimina il fattore comune di e .
Passaggio 5.6.1
Scomponi da .
Passaggio 5.6.2
Elimina i fattori comuni.
Passaggio 5.6.2.1
Elimina il fattore comune.
Passaggio 5.6.2.2
Riscrivi l'espressione.
Passaggio 6
Sposta il termine fuori dal limite perché è costante rispetto a .
Passaggio 7
Dividi il numeratore e il denominatore per la massima potenza di nel denominatore, che è .
Passaggio 8
Passaggio 8.1
Elimina il fattore comune di e .
Passaggio 8.1.1
Eleva alla potenza di .
Passaggio 8.1.2
Scomponi da .
Passaggio 8.1.3
Elimina i fattori comuni.
Passaggio 8.1.3.1
Scomponi da .
Passaggio 8.1.3.2
Elimina il fattore comune.
Passaggio 8.1.3.3
Riscrivi l'espressione.
Passaggio 8.2
Elimina il fattore comune di .
Passaggio 8.2.1
Elimina il fattore comune.
Passaggio 8.2.2
Riscrivi l'espressione.
Passaggio 8.3
Dividi il limite usando la regola del quoziente dei limiti quando tende a .
Passaggio 9
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .
Passaggio 10
Passaggio 10.1
Dividi il limite usando la regola della somma di limiti quando tende a .
Passaggio 10.2
Calcola il limite di che è costante, mentre tende a .
Passaggio 11
Poiché il suo numeratore tende a un numero reale, mentre il denominatore è illimitato, la frazione tende a .
Passaggio 12
Passaggio 12.1
Semplifica la risposta.
Passaggio 12.1.1
Somma e .
Passaggio 12.1.2
Dividi per .
Passaggio 12.1.3
Moltiplica per .
Passaggio 12.2
Qualsiasi valore elevato a è .